09-15 Notes
\theoremstyle{plain} \newtheorem{thm}{Theorem}%[section] \newtheorem{prop}{Proposition} \newtheorem{lemma}{Lemma} \newtheorem{cor}{Corollary} \newtheorem*{nonumthm}{Theorem} \newtheorem*{nonumprop}{Proposition}
\theoremstyle{definition}
\newtheorem{definition}[equation]{Definition}
\newtheorem*{nonumdef}{Definition}
\newtheorem*{nonumrem}{Remark}
\newtheorem{example}[equation]{Example}
\newtheorem*{nonumex}{Example}
\newcommand{\abs}[1]{\left\lvert{#1}\right\rvert}
\newcommand{\norm}[1]{\left\|{#1}\right\|}
% Blank box placeholder for figures (to avoid requiring any % particular graphics capabilities for printing this document). \newcommand{\blankbox}[2]{%
\parbox{\columnwidth}{\centering
% Set fboxsep to 0 so that the actual size of the box will match the % given measurements more closely.
\setlength{\fboxsep}{0pt}% \fbox{\raisebox{0pt}[#2]{\hspace{#1}}}% }%
}
\newcommand{\A}Template:\mathcal A \newcommand{\B}Template:\mathcal B \newcommand{\C}{\mathbb C} \newcommand{\D}Template:\mathcal D \newcommand{\E}{\mathcal E} \newcommand{\F}Template:\mathbb F \newcommand{\G}Template:\mathcal G \renewcommand{\H}{\mathcal H} \newcommand{\I}Template:\mathbb I \newcommand{\K}Template:\mathcal K \renewcommand{\L}Template:\mathcal L \newcommand{\M}Template:\mathcal M \newcommand{\N}{\mathbb N} \renewcommand{\P}{\mathbf P} \newcommand{\Q}{\mathbb Q} \newcommand{\calq}{\mathcal Q} \newcommand{\R}{\mathbb R} \newcommand{\calr}Template:\mathcal R \renewcommand{\S}{\mathcal S} \newcommand{\T}{\mathcal T} \newcommand{\U}Template:\mathcal U \newcommand{\V}Template:\mathbb V \newcommand{\W}Template:\mathcal W \newcommand{\X}Template:\mathcal X \newcommand{\Z}{\mathbb Z} \newcommand{\p}{\mathfrak p} \newcommand{\m}{\mathfrak m} \newcommand{\g}{\mathfrak g} \newcommand{\fa}{\mathfrak a} \newcommand{\fb}{\mathfrak b} \renewcommand{\a}{\mathfrak a} \renewcommand{\b}{\mathfrak b} \newcommand{\q}{\mathfrak q} \renewcommand{\O}{\mathcal O} \newcommand{\f}{\mathfrak f} \newcommand{\oo}{\infty} \newcommand{\eps}{\epsilon}
\DeclareMathOperator{\Isom}{Isom} \DeclareMathOperator{\Stab}{Stab} \DeclareMathOperator{\Fix}{Fix} \DeclareMathOperator{\Tor}{Tor} \DeclareMathOperator{\Ann}{Ann} \DeclareMathOperator{\Hom}{Hom} \DeclareMathOperator{\hol}{hol} \DeclareMathOperator{\End}{End} \DeclareMathOperator{\Span}{Span} \DeclareMathOperator{\rank}{rank} \DeclareMathOperator{\trace}{Tr} \DeclareMathOperator{\Spec}{Spec} \DeclareMathOperator{\Map}{Map} \DeclareMathOperator{\disc}{disc} \DeclareMathOperator{\Frac}{Frac} \DeclareMathOperator{\Divisor}{Div} \DeclareMathOperator{\divisor}{div} \DeclareMathOperator{\PDiv}{PDiv} \DeclareMathOperator{\sgn}{sgn} \DeclareMathOperator{\Lie}{Lie} \DeclareMathOperator{\Ad}{Ad} \DeclareMathOperator{\ad}{ad} \DeclareMathOperator{\GL}{GL}
\def\embed{\hookrightarrow} \def\larrow{\leftarrow} \def\hookto{\hookrightarrow} \newcommand{\inclusion}{\hookrightarrow} \newcommand{\geodx}{\geo\widetilde{DX}} \newcommand{\normal}{\vartriangleleft} \newcommand{\obar}{\overline} \newcommand{\wt}{\widetilde} \newcommand{\pair}[2]{\left\langle{#1},{#2}\right\rangle}
Here we have still fixed a manifold $X$, and principal $G$-bundle $\pi:P\to X$ with associated vector bundle $E\to X$.
We need to understand the local topology of the space $\B^p_k=\A^p_k/\G^p_{k+1}$. The best hope we could have is