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Geometry in four dimensions

Possibly the most prominent feature of four-dimensional
geometry:

1Ð→ {±I} Ð→ SO(4) Ð→ SO(3) × SO(3) Ð→ 1

If dimV = 4, then

Λ2V =Λ+V ⊕ Λ−V
6 = 3 + 3

1Ð→ {±I} Ð→ SO(V) Ð→ SO(Λ+V) × SO(Λ−V) Ð→ 1

Λ+V is an oriented three-dimensional vector space associated
to any 4-D oriented Euclidean V .

The cross product

Let X be an oriented Riemannian four-manifold. For any
x ∈ X, take V = T∗

x X.

▸ Choose an oriented orthonormal basis {e0, e1, e2, e3}.

▸ An oriented orthonormal basis for Λ+T∗

x X is

σ1 = e0 ∧ e1 + e2 ∧ e3,
σ2 = e0 ∧ e2 + e3 ∧ e1,
σ3 = e0 ∧ e3 + e1 ∧ e2.

▸ Define the cross product on Λ+T∗

x X via {σ i}
components, so σ1 × σ2 = σ3.

The de Rham complex
Inside the de Rham complex

0→ Ω0 d→ Ω1 d→ Ω2 d→ Ω3 d→ Ω4 → 0

is the subcomplex

0→ Ω0 d→ Ω1 d+→ Ω2,+ → 0.

b0 b1 b+

Given a principal bundle P with connection A,

0→ Ω0(gP)
dA→ Ω1(gP)

d+A→ Ω2,+(gP) → 0.

The double-composition is

d+A ○ dA = [F+A , ●] .

This defines a complex when F+A = 0.



Anti-self-dual equation
People often study the equation F+A = 0.
It is called the anti-self-dual equation since
F+A = 0 ⇐⇒ FA = F−A.
Solutions arise as absolute minimizers of ∥FA∥L2 .
If g ∈ GP is a gauge transformation, then

F+g(A) = g ⋅ F+A ⋅ g−1,

so GP preserves solutions to F+A = 0. The moduli space

MASD = {[A] ∈ AP/GP ∣F+A = 0}

is finite-dimensional. Roughly speaking, it defines a homology
class in AP/GP. This leads to Donaldson invariants.

Motivating question for studying Vafa-Witten

▸ What is the Euler characteristic of the ASD moduli space
MASD?

▸ Is this question meaningful?
▸ MASD can be singular
▸ MASD depends on the choice of a metric
▸ MASD has multiple possible compactifications

Comparison with Donaldson invariants

WriteMASD as a zero set:

MASD = {[A] ∈ A/G ∣ F+A = 0} .

If dim(MASD) = 0, then the Donaldson invariant is a signed
count #MASD.
Analogy with polynomials:

▸ Let M = {x∣x2 − c = 0}. How many points are in m?
▸ Signed count #M gives +1 − 1 = 0.

▸ Generically well-defined on R.
▸ Unsigned count χ(M) gives 1 + 1 = 2.

▸ Generically well-defined on C.

“Complexification” of configuration space

When dim(MASD) = 0, we expect the signed count of the
Donaldson invariant #MASD to typically differ from the
unsigned count “χ(MASD)”.
In analogy with complexification, we will “double” the degrees
of freedom in our configuration space by adding extra fields.
This leads to an augmented moduli spaceMVW with

MASD ⊂MVW.



Counting zeroes of a section
Consider a vector bundle V → X with a section s ∶ X → V .

Consider s as a vector field over the zero section in the total
space.
Somehow extend the vector field to the total space...

Orienting the zeroes

Consider the horizontal/vertical components of the derivative
along the zero section:

( 0 ●
ds ● )

(The horizontal component vanishes identically along the zero
section.) We can choose the ●.
Choose the ● as

( 0 ds∗
ds 0

)

to achieve consistently-signed determinant along the
zero-section.

Vanishing theorem
Ideally, our extended vector field will have no additional
zeroes. This is the content of a “vanishing theorem.”

⌢̈

If a vanishing theorem holds, the zeroes of our vector field
agree with the zeroes of our section, and the signed zero count
of our vector field equals the unsigned zero count of our
section.

Euler characteristic ofMASD

In this finite-dimensional analogy,MASD is the zero-set of the
section, andMVW is the zero-set of the vector field.
When a vanishing theorem holds,MASD =MVW. In this case,
we expect

“#MVW” = “χ(MASD).”



What’s wrong with χ(MASD)?

The Poincaré-Hopf index theorem only computes the Euler
characteristic of a compact manifold. SinceMASD is
non-compact, we need a compactificationMASD:

The invariant should be independent of the metric g, but
different choices of g typically lead to cobordant compactified
ASD moduli spacesMASD(g).
Euler characteristic is not invariant under cobordism! (S2)

Behavior of families
Consider 0 = x2 − c as c goes from positive to negative:

Alternative behavior
We could have extended the vector field differently.

What is the purpose of extra fields?

Consider a one-parameter family of metrics {gt} for t ∈ R.

As the Euler characteristic ofMASD changes, points inMVW
should be created or destroyed to compensate.



Additional pathologies
The previous picture is a fantasy. The crux of this program is
to understand how to deal with pathologies.

▸ Sequences of solutions inMVW could have unbounded L2

norms.

▸ Rays appear inMVW at reducible points ofMASD.

▸ Despite having expected dimension zero, there are often
manifolds of non-ASD solutions

Atiyah-Jeffrey supersymmetry

There is an Atiyah-Jeffrey style supersymmetric path integral
expression for the Euler characteristic ofMASD.

“χ(MASD)” = “ ∫ e−L .”

Vafa and Witten recognized Yamron’s twist of N = 4
supersymmetric Yang-Mills as such.
They were studying N = 4 supersymmetry in the context of
S-duality.

S-duality and geometric Langlands

In this context, S-duality roughly means that the generating
function

∑
k
“χ(MASD(k))”qk

should be a modular form.
In several specific examples, they “computed” these generating
functions and verified their modularity.
This Vafa-Witten theory is one of three twists of N = 4
supersymmetric Yang-Mills theory. In 2006, Kapustin and
Witten explored the relation of another such twist is to
geometric Langlands. More recently, the Vafa-Witten twist has
appeared in the work of Haydys and Witten on
five-dimensional gauge theory.

Explicit example of S-duality
Consider the four-manifold X = K3. The generating functions
for G = SU(2) and Ĝ = SO(3) are

ZSU(2)(q) = 12q−2(14 + 0q + 30q2 + 3200q3 +⋯
⋯+ 101897907561785049754 q16 +⋯

ZSO(3)(q) = q−2(14 + 0q1/2 + 0q + 2096128q3/2+
+ 50356230q2 + 679145472q5/2+

⋯ + 213799744095722709228249754 q16 +⋯

Define q1/2 = e iπτ. In this case, S-duality is the “modular
relation”

ZSU(2)(−1/τ) = (2τ)−12ZSO(3)(τ).



The equations

The equations

F+A − 14 [B × B] − 12 [C , B] = 0
dAC + d∗AB = 0

Let P → X4 be a principal bundle over an oriented Riemannian
four-manifold. A configuration (C ,A, B) consists of

▸ A section of the adjoint bundle C ∈ Ω0(M;gP)
▸ A connection A ∈ AP

▸ An adjoint-valued self-dual two-form B ∈ Ω2,+(M;gP)

The quadratic term

The equations

F+A − 14[B × B] − 12 [C , B] = 0
dAC + d∗AB = 0

This quadratic term on g⊗ Λ2,+ is the tensor product of the
Lie bracket and the cross product.
Since [, ] is antisymmetric on g and × is antisymmetric on
Λ2,+, their product [B1 × B2] is symmetric.

Only semi-definite

Note that [B × B] has a nontrivial kernel. Later we will see
that this has dire consequences.
For example, if B has rank one

B = χ ⊗ σ1,

then
[B × B] = [χ, χ] ⊗ (σ1 × σ1) = 0⊗ 0.

The quartic form ∣[B × B]∣2 is only semi-definite.

The standard compactness strategy

▸ Use energy identities to establish a priori L2
1 bounds

▸ These L2
1 bounds imply weak compactness (Hodge theory

for abelian case, Uhlenbeck/Sedlacek theory for
non-abelian case)

▸ Elliptic regularity implies strong (Uhlenbeck) compactness

Summary
Using established analytic machinery, a priori L2

1 bounds imply
compactness

Examples: ASD, Seiberg-Witten, PU(2) monopoles



A priori estimates for SD/ASD equations

EYM(A) ∶= 12 ∫X ∣FA∣2 .

By Uhlenbeck/Sedlacek theory, EYM(A) is analogous to ∥A∥2L21
after gauge fixing.

∣FA∣2 = ∣F+A ∣
2 + ∣F−A ∣

2
.

κ ∶= ∫X 12 (∣F−A ∣
2 − ∣F+A ∣

2) ,

proportional to a Chern number.

EYM(A) = ∫X ∣F−A ∣
2 − κ = ∫X ∣F+A ∣

2 + κ.

Yang-Mills energy for ASD connections

EYM(A) = ∫X ∣F−A ∣
2 − κ = ∫X ∣F+A ∣

2 + κ.

EYM(A) ≥ ∣κ∣ ,
EYM(A) = ±κ ⇐⇒ F±A = 0.

A priori estimate
F+A = 0 Ô⇒ EYM(A) = κ.

This implies weak L2
1 compactness up to gauge

transformations, in the sense of Sedlacek. Elliptic regularity
implies Uhlenbeck compactness.

The Seiberg-Witten equations

F+A − 14(ϕ ⊗ ϕ∗)0 = 0,
∂/Aϕ = 0.

P is a U(1) bundle with connection A and associated line
bundle L.
ϕ is a section of the twisted spinor bundle S/ ⊗ L.
Clifford multiplication identifies F+A with a traceless
endomorphism of S/ ⊗ L.
Define energy as the sum of squares:

ESW(A, ϕ) ∶= ∫X ∣F+A − 14(ϕ ⊗ ϕ∗)0∣2 + ∫X ∣∂/Aϕ∣2 .

Energy identities for Seiberg-Witten

ESW(A, ϕ) ∶= ∫X ∣F+A − 14(ϕ ⊗ ϕ∗)0∣2 + ∫X ∣∂/Aϕ∣2 .

The Weitzenböck formula for spinors gives

∫X ∣∂Aϕ∣2 = ∫X (∣∇Aϕ∣2 + 14s ∣ϕ∣2 − 12 ⟨ϕ, F+A ⋅ ϕ⟩) .

Expanding out ESW gives

ESW = ∫X (∣F+A ∣
2 + 116 ∣(ϕ ⊗ ϕ∗)0∣2 +((((((

(((12 ⟨F+A , (ϕ ⊗ ϕ∗)0⟩)

+ ∫X (∣∇Aϕ∣2 + 14s ∣ϕ∣2 −����
��12 ⟨ϕ, F+A ⋅ ϕ⟩)

ESW = ∫X (∣F+A ∣
2 + ∣∇Aϕ∣2 + 132 ∣ϕ∣4 + 14s ∣ϕ∣2)



Completing the square

ESW = ∫X (∣F+A ∣
2 + ∣∇Aϕ∣2 + 132 ∣ϕ∣4 + 14s ∣ϕ∣2) .

Problem When scalar curvature is negative, the term
∫X 14s ∣ϕ∣2 could be large and negative.

Solution Complete the square:

ESW = ∫X (∣F+A ∣
2 + ∣∇Aϕ∣2 + 132 (∣ϕ∣2 + 4s)

2 − 12s2)

= ∫X (12 ∣FA∣2 + ∣∇Aϕ∣2 + 132 (∣ϕ∣2 + 4s)
2) − κ − ∫X 12s2.

Compactness for Seiberg-Witten
A priori estimate

ESW = 0 ⇐⇒

∫X (12 ∣FA∣2 + ∣∇Aϕ∣2 + 132 (∣ϕ∣2 + 4s)
2) = κ + ∫X 12s2.

The left hand side is a sum of positive terms. The quartic
term is essentially ∥ϕ∥4L4 .
The right hand side depends only on the (fixed) topology of
the bundle, and geometry of the manifold.
Since the gauge group is abelian, elementary Hodge theory
yields genuine L2

1 bounds on A and ϕ, and elliptic
bootstrapping implies compactness.

Energy identities for Vafa-Witten
We emulate the standard approach:

EVW(C ,A, B) ∶= 12 ∥dAC + d∗AB∥
2 + ∥F+A − 14 [B × B] − 12 [C , B]∥2

= 12 ∥dAC∥2 + 12 ∥d∗AB∥
2 + ∥F+A − 14 [B × B]∥2 + 14 ∥[C , B]∥2

+ ∫X (⟨dAC , d∗AB⟩ − ⟨F+A , [C , B]⟩) + ∫X 14 ⟨[B × B] , [C , B]⟩ .

The bottom line cancels since

⟨F+A , [C , B]⟩ = ⟨[F+A ,C] , B⟩ = ⟨dAdAC , B⟩ ,

and the Jacobi identity implies

[[B × B] ⋅ B] = 0.

Simplification

Thus, assuming that the base manifold X is closed, we have
the identity

EVW = 12 ∥dAC∥2 + 12 ∥d∗AB∥
2 + ∥F+A − 14 [B × B]∥2 + 14 ∥[C , B]∥2 .

This is a different sum of squares, equivalent equations are
F+A − 14 [B × B] = 0, [C , B] = 0,

d∗AB = 0, dAC = 0.
These equations are linear in C. The interesting nonlinear part
with B decouples. WLOG, set C = 0.



Analogy with Seiberg-Witten
The equations

F+A = 14 [B × B]
d∗AB = 0

These equations say that B has a harmonic square root, if we
interpret “B2” = [B × B] .

B = “2
√
F+A”

d∗AB = 0 (⇒ dAB = 0)

Contrast this with the Seiberg-Witten equations

F+A − (ϕ ⊗ ϕ∗)0 = 0
∂/Aϕ = 0

The Weitzenböck formula

12 ∥d∗AB∥
2 = 14 ∥∇AB∥2 + ∫X(12 ⟨B, [F+A × B]⟩+

+ ( 112s − 12W+) ⋅ ⟨B ⊗ B⟩).

EVW(0,A, B) = ∥F+A − 14 [B × B]∥2 + 12 ∥d∗AB∥
2
.

Once again, the cross-term miraculously cancels:

EVW = ∥F+A∥
2 + 116 ∥[B × B]∥2 + 14 ∥∇AB∥2 +

∫X 12 (
((((

((((
(((

(((

⟨B, [F+A × B]⟩ − ⟨F+A , [B × B]⟩)+ ∫X( 112s−12W+)⋅⟨B ⊗ B⟩ .

Vanishing theorem

The Vafa-Witten equations (with C = 0) are equivalent to

0 = 12 ∥F+A∥
2 + 14 ∥∇AB∥2 + 116 ∥[B × B]∥2 +

+ ∫X( 112s − 12W+) ⋅ ⟨B ⊗ B⟩ .

If furthermore the curvature part is positive semi-definite, then
M must be Kähler, hyper-Kähler, or b+ = 0, and the equations
decouple further to

F+A = 0 ∇AB = 0 [B × B] = 0.

Kähler manifolds

Let (M , g ,ω) be a closed Kähler manifold. The equations

F+A − 14 [B × B] = 0
d∗AB = 0

reduce to

β ∈ Ω2,0(X;gP ⊗C), B = β − β∗, ∂̄Aβ = 0,

ω ∧ iFA + 12 [β ∧ β∗] = 0.
Note the extra symmetry β ↦ e iθ β for θ constant.



Semistability

We say a subbundle E′ ⊂ E is β-invariant if

β(E′) ⊂ E′ ⊗ K .

Suppose E is a Hermitian vector bundle, A is a holomorphic
connection on E, the traceless part of FA is F0

A, and
β ∈ Ω2,0(End(E)) satisfies

ω ∧ iF0
A + 12 [β ∧ β∗] = 0,

then E is β-semistable.

Failure of a priori bound

Recall that our quartic term ∣[B B]∣2 is only positive
semi-definite. If it were positive-definite, then it would
dominate the curvature part, and the identity

0 = 12 ∥FA∥2 + 14 ∥∇AB∥2 + 116 ∥[B × B]∥2 +

+ ∫X( 112s − 12W+) ⋅ ⟨B ⊗ B⟩ − κ

would yield a priori bounds on ∥FA∥, ∥∇AB∥, and ∥B∥L4 .
Instead, we get no such bounds since ∣[B × B]∣2 could vanish
while the curvature terms go to −∞ unchecked.

Abelian solutions

For the abelian group G = U(1), the equations with C = 0
reduce to

F+A = 0, d∗AB = 0.
On the trivial bundle, A = 0, B ∈ H2,+ harmonic is a family of
unbounded solutions whenever b+ > 0.

Local behavior of B

Consider hyperbolic space H4 of constant sectional curvature
−1, with A the trivial connection, and

B = i (e01 + e23)
cosh

4(t/2)
,

where t is a radial coordinate, and {e i} is a orthonormal and
conformally flat coframe. Computation shows that d∗B = 0, so
this is a solution.



Scaling the metric

Although these equations are not conformally invariant, there
is a scaling law.
For all η ∈ R, the space of solutions is invariant under

(C ,A, B, g) ↦ (e−ηC ,A, eηB, e2ηg).

Thus rescaling the metric can be absorbed by this rescaling of
B and C.

Curvature and the width of B
If we attempt to shrink our abelian example for B on H4, we
must scale the metric appropriately, causing the scalar
curvature to blow up.
Given the natural scalings

length ∼ eη

curvature ∼ e−2η

B = i (e01 + e23)
cosh

4(e−ηt/2)
,

but the rescaled curvature is e−2η. It’s reasonable to suspect
that B cannot concentrate below this length scale when
curvature is fixed. This is a heuristic for Uhlenbeck
compactness: B can’t bubble.

More Weitzenböck

For a more concrete application of the width heuristic,
consider the following identity for solutions:

18∆ ∣B∣2 + 14 ∣∇AB∣2 + 18 ∣[B × B]∣2 = ⟨B ⋅ (− 112s + 12W+)B⟩

In particular,
∆ ∣B∣2 ≤ λ ∣B∣2

where λ depends on curvature.
With slightly more work,

∆ ∣B∣ ≤ λ ∣B∣

Bounding B

Thanks to a mean-value inequality due to Morrey

∆ ∣B∣ ≤ λ ∣B∣ Ô⇒ ∥B∥L∞ ≤ c ∥B∥L2

Thus
∥F+A∥L∞ = ∥14 [B × B]∥L∞ ≤ c′ ∥B∥2L2 .

Assuming a bound on ∥B∥L2 , we get bounds on ∥F+A∥L∞ and
∥B∥L∞ .
If ∣[B × B]∣2 were positive-definite, such bounds would follow
automatically from a priori estimates plus maximum principle.



Feehan-Leness program for PU(2)

Only major property distinguishing PU(2) monopoles and
Vafa-Witten equations is ∣[B × B]∣2 being semi-definite. Their
analytic framework extends to give:

▸ Slice theorem
▸ Elliptic estimates
▸ Removal of singularities
▸ Compactness (almost!)

Compactness requires bounds on ∥F+A∥L∞ and ∥B∥L∞ .

Truncated Vafa-Witten moduli space

Mb
VW,k ∶= {[0,A, B] ∈ MVW,k ∣ ∥B∥L2 ≤ b} , b ∈ R

▸ Mb
VW,k ⊂Mb′

VW,k for b ≤ b′.
▸ M0

VW,k =MASD,k.
▸ Mb

VW,k = ∅ for b < 0 or k < −cb4

EachMb
VW,k has an Uhlenbeck compactificationMb

VW,k.

A partial compactification is given byMVW,k ∶= ⋃b∈RM
b
VW,k .

Kuranishi complex

The Kuranishi complex for an instanton A ∈ AP is

0→ Ω0(gP)
dAÐ→ Ω1(gP)

d+AÐ→ Ω2,+(gP) → 0

with (harmonic) cohomology

H0
A H1

A H2
A

▸ H0
A is the infinitesimal stabilizer (vanishes for irreducibles)

▸ H1
A is the tangent space ofMASD

▸ H2
A is the obstruction to transversality

Index theorem

0→ Ω0(gP)
dAÐ→ Ω1(gP)

d+AÐ→ Ω2,+(gP) → 0
H0

A H1
A H2

A

We will always assume A is irreducible, so H0
A = 0.

By the index theorem,

dimH1
A = d + c dimH2

A = c

where d is the expected dimension 8k − 3(1 − b1 + b+) for
G = SU(2).
For generic metrics, c = 0, and a neighborhood of [A] ∈ MASD
is modeled by H1

A with dimension d.



Inverse function theorem

Consider
dimH1

A = d + 1 dimH2
A = 1

The differential
Ω1(gP)

d+AÐ→ Ω2,+(gP)
is no longer surjective. For a ∈ H1

A,

F+A+a = F+A + d+Aa + 12 [a ∧ a]+ = 12 [a ∧ a]+ .

Can use inverse function theorem to find ã with F+A+ã = 0 when
12 [a ∧ a]+ ⊥ H2

A.

Quadratic model

dimH1
A = d + 1 dimH2

A = 1

Fix ω ∈ H2
A, with ω ≠ 0. Define a quadratic form q(a) on H1

A
by

q(a) ∶= ∫X ⟨12 [a ∧ a]+ ⋅ ω⟩ = 0.

If q is nondegenerate, a neighborhood of [A] ∈ MASD is
modeled on q(a) = 0.

Vafa-Witten quadratic model

∫X ⟨[a × b] ⋅ α1⟩ = 0,

⋮

∫X ⟨[a × b] ⋅ αd+1⟩ = 0,

∫X ⟨12 [a ∧ a]+ − 14 [b × b] ⋅ ω⟩ = 0.

When nondegenerate, first equations say a = 0 or b = 0.

Perturbing the metric

Consider a perturbation of conformal structure
m ∈ Ω0(X;Hom(Λ2,−V∗, Λ2,+V∗)), and the parameterized
family tm, t ∈ R. We get an extra term

∫X ⟨(12 [a ∧ a]+ − 14 [b × b] − tmF−A) ⋅ ω⟩ = 0.

When nondegenerate, we get the picture



Gluing theory and future work

Following the work of Donaldson and Taubes, we can construct
approximate solutions by grafting concentrated instantons.
The obstruction to repairing the graft to obtain a genuine
solution can be approximated by a quadratic map.
Assuming nondegeneracy, we obtain quadratic models of the
Uhlenbeck ends of the moduli space.
We hope to gain insight into the lingering compactness issues
by studying these models.
New nonlinear estimates will hopefully lead to better a priori
bounds.

IT’S OVER!

▸ Thanks for listening!
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