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@ Motivating problem: Understand classification of
smooth structures on (oriented) four-manifolds.

Ben Mares

@ Primary tool: Four-manifold invariants. (If invariants
disagree, then smooth structures are distinct.)

@ Invariants arise from studying PDEs, depending on
extra structure (principal bundle, Riemannian
metric, etc.)
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@ Gauge theory. (Various nonlinear PDEs)
Quotient by gauge group
Invariants: Donaldson invariants, Seiberg-Witten
invariants.
More on this later.
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Establish new invariants using Vafa-Witten equations.

@ Currently only conjecturally defined.

@ For many Kahler manifolds they have been
“computed” by algebraic methods, and the answers
satisfy the conjectured properties.

@ We want to prove that these invariants exist for any
oriented Riemannian manifold.

@ We construct a partial Uhlenbeck compactification.

@ Many issues remain unresolved before invariants
become rigorous.



Why care?

Some Analytic
Aspects of
Vafa-Witten
Twisted N = 4
Supersymmetric
Yang-Mills Theory

Ben Mares

Understanding smooth structures
Relates to the Euler characteristics of moduli spaces
Connections with mathematical physics

Number theory: Are the generating functions
modular forms?
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An introduction
to anti-self-duality

Review of geometry in four dimensions

Possibly the most prominent feature of four-dimensional
geometry:

1 — {xI} — SO(4) — SO(3) x SO(3) — 1

If dim V' =4, then Hodge star » : A2V - A2V is
self-adjoint, with x2 =1, so eigenvalues of * must be +1.
ATV = span{e0 nel+e?ned e ner+ednel,

ePAned+el A ez},
A"V =span{e’ne' —e?ne’ e net—e’ne,

e°/\e3—el/\ez}.
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An introduction 6 = 3 + 3

to anti-self-duality

1 —> {«I} — SO(V) — SO(A*V) x SO(A"V) —> 1

A*V is an oriented three-dimensional vector space
associated to any 4-D oriented Euclidean V.
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The cross product
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Aspects of Let X be an oriented Riemannian four-manifold. For any
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NESEEE  x € X, take V =T} X.
Supersymmetric
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e Mares @ Choose an oriented orthonormal basis {e?, e!, 2, e3}.

An introduction

to anti-self-duality @ An oriented orthonormal basis for A*T; X is

1

e nel +e?n el

dc?=e’net+ednel,

ad=e"rned+el nel.

@ Define the cross product on A*T; X via {0}
components, so ¢! x 02 = ¢3.
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Inside the de Rham complex
0-0° 50222320t -0
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+
An introduction O > QO i Ql d_) QZ;+ N 0.

to anti-self-duality
b° b! b*
Given a principal bundle P with connection A,
d+
0 0%gr) % 0'(ar) = 0> (gr) 0.
The double-composition is
dyods=[Fj.e].

This defines a complex when F} = 0.
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Solutions arise as absolute minimizers of |Fa4| ..

An introduction

Bl |f g € Gp is a gauge transformation, then
Fiay=8Fig,
so Gp preserves solutions to F} = 0. The moduli space
Masp = {[A] € Ap/Gp|F} = 0}

is finite-dimensional. Roughly speaking, it defines a
homology class in Ap/Gp. This leads to Donaldson
invariants.
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Motivating question for studying
Vafa-Witten
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Sen Mares @ What is the Euler characteristic of the ASD moduli
space Msp?

History and e Is this question meaningful?

motivation

o Singularities

@ Metric dependence

o Choice of compactification (if any)
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Comparison with Donaldson invariants

Some Analytic

- Write M ssp as a zero set:
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If dim(Masp) =0, then the Donaldson invariant is a
signed count # M ssp.

History and

e Analogy with polynomials:

o Let M = {x|x?-c=0}. How many points are in m?
e Signed count #M gives +1 -1 =0.
o Generically well-defined on R.

o Unsigned count y(M) gives 1 +1 = 2.

o Generically well-defined on C.
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Supersymmetric

e \When dim(Masp) = 0, we expect the signed count of
Ben Mares the Donaldson invariant # M ,sp to typically differ from
the unsigned count “y(Masp)”.

History and In analogy with complexification, we will “double” the
meeen degrees of freedom in our configuration space by adding
extra fields. This leads to an augmented moduli space
MVW with

Masp € Myw.
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Counting zeroes of a section

Consider a vector bundle V — X with a section
s: X->V.

T~ ]




Counting zeroes of a section

S Consider a vector bundle V — X with a section

Vafa-Witten .
. e d
Twisted N = 4 S X V
Supersymmetric
Yang-Mills Theory

Ben Mares

History and \\. /

motivation W

Consider s as a vector field over the zero section in the
total space.



Counting zeroes of a section

S Consider a vector bundle V — X with a section

e, S
YangMills Theory =W | I
R
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Consider s as a vector field over the zero section in the
total space.

Somehow extend the vector field to the total space...



Vanishing theorem

e A Ideally, our extended vector field will have no additional

Vafa-Witten e 1] . . ”
LR zeroes. This is the content of a “vanishing theorem.
Supersymmetric
Yang-Mills Theory

VAESN
Ben Mares N~
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motivation A A N R
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If a vanishing theorem holds, the zeroes of our vector
field agree with the zeroes of our section, and the signed
zero count of our vector field equals the unsigned zero
count of our section.
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In this finite-dimensional analogy, M ssp is the zero-set of
the section, and Myw is the zero-set of the vector field.

Ben Mares

ictory and When a vanishing theorem holds, Masp = Myw. In this
istory
motivation Casev we eXpeCt

“HMyw" =" x(Masp).”
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What is the purpose of extra fields?
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tI:O til '
As the Euler characteristic of Magp changes, points in
My should be created or destroyed to compensate.

-1
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Additional pathologies

Some Analytic The previous picture is a fantasy. The crux of this
spects of

Vafa Witten program is to understand how to deal with pathologies.

e

Supersymmetric
Yang-Mills Theory

@ Sequences of solutions in Myw could have
unbounded L2 norms.

Ben Mares

History and
motivation

@ Rays appear in Myw at reducible points of M agp.

@ Despite having expected dimension zero, there are
often manifolds of non-ASD solutions




Atiyah-Jeffrey supersymmetry
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Wuariuisl There is an Atiyah-Jeffrey style supersymmetric path
R integral expression for the Euler characteristic of M sp.

A Masp)" = [ e

History and
motivation

Vafa and Witten recognized Yamron's twist of N =4
supersymmetric Yang-Mills as such.

They were studying A = 4 supersymmetry in the context
of S-duality.
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e A In this context, S-duality roughly means that the

LR generating function

Supersymmetric

Yang-Mills Theory Z “X(MASD(k))”qk
Ben Mares %
should be a modular form.

History and

motivation In several specific examples, they “computed” these
generating functions and verified their modularity.

This Vafa-Witten theory is one of three twists of N =4
supersymmetric Yang-Mills theory. In 2006, Kapustin and
Witten explored the relation of another such twist is to
geometric Langlands. More recently, the Vafa-Witten
twist has appeared in the work of Haydys and Witten on
five-dimensional gauge theory.
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Some Analytic Consider the four-manifold X = K3. The generating

Aspects of n
Vafa-Witt H — —
BEl  functions for G = SU(2) and G = SO(3) are
Supersymmetric
Yang-Mills Theory

Zsu2)(q) = 1q72(% + 0 + 3042 + 32004 + ---

S 10189790756178504975 ,16
4

q°+-

Ben Mares

mothation Zso»(q) = q72(% +0g'/% + 0g + 20961284%/*+
+503562304° + 6791454724°/*+

1
N 213799744095742270922824975q 6, ...

Define g'/2 = ¢i*. In this case, S-duality is the “modular
relation”

Zsu)(-1/7) = (27) " Zso(3)(7).



The equations

Some Analytic
Aspects of
Vafa-Witten

Twisted N = 4

Supersymmetric F:{ —i [B X B] - % [C, B] = 0

Yang-Mills Theory

Ben Mares dAC + dZB =0

The equations

Let P — X* be a principal bundle over an oriented
Riemannian four-manifold. A configuration (C, A, B)
consists of

The equations

@ A section of the adjoint bundle C € Q%(M;gp)
@ A connection A€ Ap

@ An adjoint-valued self-dual two-form
Be Q> (M;gp)




The quadratic term

Some Analytic
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Vafa-Witten

Twisted N = 4

vangmite Treors il The equations
Ben Mares Fz_i[BXB]—%[C’B]zo
daC+d;B=0

This quadratic term on g ® A>* is the tensor product of
the Lie bracket and the cross product.

The equations

Since [, ] is antisymmetric on g and x is antisymmetric
on A%*, their product [B; x B,] is symmetric.
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Only semi-definite

Some Analytic
Aspects of

Vafa-Witten
Twisted N = 4

Biarouussl Note that [B x B] has a nontrivial kernel. Later we will
ang-Mills Theory

e Maree see that this has dire consequences.

For example, if B has rank one

1
B=x®o0o,
The equations

then
[BxB] =[x, x]®(c'x0')=0®D0.

The quartic form |[B x B]|* is only semi-definite.
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The standard compactness strategy

Some Analytic

Aspects of @ Use energy identities to establish a priori L? bounds
afa-Witten

Twisted N = 4

Supersymmetric

Yang-Mills Theory @ These L? bounds imply weak compactness (Hodge
fen Mares theory for abelian case, Uhlenbeck/Sedlacek theory
for non-abelian case)

e Elliptic regularity implies strong (Uhlenbeck)
compactness

Energy identities
in gauge theory

Using established analytic machinery, a priori L3 bounds
imply compactness

Examples: ASD, Seiberg-Witten, PU(2) monopoles
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Energy identities for Vafa-Witten

Some Analytic We emulate the standard approach:
spects of

Vafa-Witten

LSRGl Sy (C,A,B) =1 [dsC+d;B|*+|F; -5 [BxB]-3[C,B]|’
Yang-Mills Theory

Ben Mares

= HliCI? + 3 1d3BI" + | F - £ [Bx B[ + 1[G, B]
+ [ (daCdiB) ~(EL[CB]) + [ 4{(BxB].[C.B)).

The bottom line cancels since

Energy identities <Fz, [C, B]> = ([Fz, C] 5 B> = (dAdAC, B> 5

for Vafa-Witten

and the Jacobi identity implies
[[BxB]-B]=0.
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Simplification

Some Analytic
Aspects of

VafaWitten Thus, assuming that the base manifold X is closed, we

Twisted N = 4 . .
Bysusmdeel  have the identity

Yang-Mills Theory

BN Cuw =3 |daCl P+ |diBI + | Ef - 3 [Bx B *+1 [C. B] |

This is a different sum of squares, equivalent equations
are

Fi-1[BxB]=0, [C,B] =0,
d;;B:O, dACZO.

These equations are linear in C. The interesting
nonlinear part with B decouples. WLOG, set C = 0.

Energy identities
for Vafa-Witten
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Analogy with Seiberg-Witten

Some Analytic The equations
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Yang-Mills Theory

Ben Mares

These equations say that B has a harmonic square root,
if we interpret “B*” = [B x B].
B="2\/F}"
d;B=0 (=dsB=0)

Energy identities

for Vafa-Witten

Contrast this with the Seiberg-Witten equations

Fi-(¢®¢)o=0
Pap=0
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The Weitzenbock formula

Some Analytic
Aspects of
Vafa-Witten

ROl 1|0 B|2=1|V.aB|+ fX (3(B,[F} x B])+

Yang-Mills Theory

+ (s = 4W) (B o B)).

Evw(0,A,B) = |F; 5 [Bx B]|* + 1 |d;B|*.

Once again, the cross-term miraculously cancels:

Energy identities
for Vafa-Witten

Evw = |FilI* + 46 [Bx B + | VaB|* +

fx% MJFA(E—ZS—%W+)~(B ® B).
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Vanishing theorem

Some Analytic
Aspects of
Vafa-Witten . . . .
WAV The Vafa-Witten equations (with C = 0) are equivalent to
Supersymmetric
Yang-Mills Theory

0=Evw =3 |E;I" + 5 | VaB|* + 56 [[Bx B]|" +

f(ns-- )-(B®B).

If furthermore the curvature part is positive semi-definite,
then M must be Kahler, hyper-Kahler, or b* =0, and the
equations decouple further to

Energy identities
for Vafa-Witten

F;=0 Vv4B=0 [BxB]=0.



Failure of a priori bound
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Recall that our quartic term |[B.B]|* is only positive
semi-definite. If it were positive-definite, then it would
S dominate the curvature part, and the identity

IFAl* + 3 IVaBI” + 4 | [B x B]|* +

+[X(ﬁs—§W+)-(B®B)—K

0

would yield a priori bounds on |F,|, |V4B|, and |B|,..
Instead, we get no such bounds since |[B x B]|* could

vanish while the curvature terms go to —oo unchecked.

Energy identities
for Vafa-Witten
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More Weitzenbock

Some Analytic
Aspects of

Vafe Wit For a more concrete application of the width heuristic,
wistel =4 . . . . .

Ll consider the following identity for solutions:

Yang-Mills Theory

Ben Mares

$AIB +§|VaBl* +§|[BxB][ = (B- (~&s +3W*) B)
In particular,
A|BP* < A|B}
where A depends on curvature.

Energy identities With slightly more work,

for Vafa-Witten

AlB| < A |B]
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Bounding B

Some Analytic
Aspects of

Vafe Witten Thanks to a mean-value inequality due to Morrey
wiste =4

Supersymmetric
Yang-Mills Theory

s A[B|<A[B] = [B] .~ <c[B]

Thus
|Fillp = I3 [Bx B~ < | B3

Assuming a bound on |B|;,, we get bounds on | F}

1o
and |B]|.

Energy identities
for Vafa-Witten

If |[B x B]|* were positive-definite, such bounds would
follow automatically from a priori estimates plus
maximum principle.
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Twisted N = 4

st Only major property distinguishing PU(2) monopoles and
Yang-Mills Theory . . . 2 . . - .

Vafa-Witten equations is |[B x B]|” being semi-definite.
Their analytic framework extends to give:

Ben Mares

@ Slice theorem
e Elliptic estimates
@ Removal of singularities

o Compactness (almost!)

e Compactness requires bounds on ||F}||,.. and B, .

e
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Truncated Vafa-Witten moduli space

Some Analytic
Aspects of
Vafa-Witten

Twisted N = 4

Supersymmetric

Yang-Mills Theory M%W,k = {[O’ A) B] € MVW,k | ||B||L2 S b} > b € R

Ben Mares

b 24 !
° MVW,k c MVW,k forb<b'.
0 _
(] MVW,k = MASD,k-

o/\/li’,w’k=®forb<00rk<—cb4

Each MY .. has an Uhlenbeck compactification Mzw,k.

VW,k

Properness

A partial compactification is given by

— — b
Myw i = Uper Myw «-



IT'S OVER!
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@ Thanks for listening!!

Properness
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