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Abstract

Given an oriented Riemannian four-manifold equipped with a principal bundle, we investigate the
moduli space My of solutions to the Vafa-Witten equations. These equations arise from a twist
of N = 4 supersymmetric Yang-Mills theory. Physicists believe that this theory has a well-defined
partition function, which depends on a single complex parameter. On one hand, the S-duality
conjecture predicts that this partition function is a modular form. On the other hand, the Fourier
coeflicients of the partition function are supposed to be the “Euler characteristics” of various moduli
spaces M asp of compactified anti-self-dual instantons. For several algebraic surfaces, these Euler
characteristics were verified to be modular forms.

Except in certain special cases, it’s unclear how to precisely define the partition function. If there is a
mathematically sensible definition of the partition function, we expect it to arise as a gauge-theoretic
invariant of the moduli spaces Myw. The aim of this thesis is to initiate the analysis necessary
to define such invariants. We establish various properties, computations, and estimates for the
Vafa-Witten equations. In particular, we give a partial Uhlenbeck compactification of the moduli
space.
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Chapter 1

Introduction to twisted ' = 4 supersymmetric
instantons

1.1 Yang-Mills theory and the Donaldson invariants

During the 1980s and the early 1990s, the moduli space of anti-self-dual (ASD) instantons was a
crucial tool for the study of smooth four-manifolds. Let (X, g) be an oriented Riemannian four-
manifold, and let G be a compact Lie group. Given a principal G-bundle P — X, any connection
A € Ap, has a curvature F, € Q2(X;gp). Two-forms split into metric-dependent +1 eigenspaces
O2%*(X; gp) of the Hodge star operator. Correspondingly, curvature decomposes as F4 = F} + F}.
For a specific choice of (X, ) and P, we define ASD moduli space as

Mausp(P, g) ={AeAp | Fy =0} [Gp,

where Gp is the group of automorphisms of P. When non-empty, M asp typically is a submanifold
of finite dimension inside the quotient .Ap/Gp. In the case G = SU(2), Donaldson showed how the
homology of Masp ¢ Ap/Gp defines (in many circumstances) invariants of 4-manifolds which are
independent of the metric g, and capable of distinguishing differentiable structures [Don90,[DK97].

Proving that the Donaldson invariants are well-defined involves many technical challenges. For
example, sometimes M 4gp is usually non-compact, and sometimes has singularities. There is a natu-
ral Uhlenbeck compactification M ssp, and singularities are handled through metric perturbations.
Furthermore, while the topology of Msp (P, g) depends on g, one must prove that the invariants
do not. Roughly, this amounts to showing that different choices of metric lead to homologous Masp.

1.2 A brief overview of twisted supersymmetric Yang-Mills theory

Supersymmetry provides much of the historical motivation behind the questions this thesis attempts
to address. Because supersymmetry does not play an essential role in this thesis, this overview will
be cursory.
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Roughly speaking, supersymmetry relates fermionic (odd / antisymmetric) particles to bosonic
(even / symmetric) particles. A supersymmetic theory comes equipped with A/ supersymmetry
operators {Q,-}f\:[1 which exchange bosons and fermions. Analysis of twisted A/ = 2 supersymmetric
Yang-Mills theory [SW94a,[SW94b] led to the discovery of the Seiberg-Witten equations [Wit94].

There are three possible twists of the A/ = 4 supersymmetric Yang-Mills equations. The focus of this
thesis is the Vafa-Witten twist, which was studied in [VW94]. Recently, a different twist was shown
to be related to the geometric Langlands program and dubbed the GL twist [KWO07].

Supersymmetric quantum field theories have nice properties which make them relatively tractable,
and physicists conjectured an electric-magnetic duality which exchanges strong and weak coupling
when N\ = 4. This is known as S-duality.

1.3 The Vafa-Witten invariant

In search of evidence for S-duality, Vafa and Witten explored their twist of A/ = 4 supersymmetric
Yang-Mills theory [VW94]. For any smooth oriented Riemannian four-manifold (X, go) with
principal bundle P — X, we define the configuration spaces

C:=Q%X;9p) x Ap x Q> (X; 9p),
C' =0 (X;9p) x Q" (X; 9p).

We define the gauge-equivariant Vafa-Witten mafl]

VW:C — (C/,

(daC +d;B) |2 ) . W)

VW(C, A, B) ::( Fiv i [B.B]+ 1 [B,C]

Mimicking the setup of Donaldson theory, the Vafa-Witten moduli space is
Myw(P,g) :={(C,A,B) | VW(C,A,B) =0} /Gp.

When the map VW is transverse, the expected dimension of My is zero since the principal symbol
of (plus gauge fixing) is self-adjoint. However, transversality often fails, resulting in components
of positive dimension. In particular M sp ©¢ My since

VW(0, 4,0) :( ; )

By appropriately counting the number of points/components of My, we hope to obtain a (con-
jecturally well-defined) number VW (P) called the Vafa-Witten invariant for the principal bundle
P — X. Vafa and Witten argue that the number VW (P) corresponds to the formal Atiyah-Jeffrey

"The factor 1//2 is chosen to ensure that (2.1) works out. The product denoted by B, . 8, for f; € Q>*(X;R) is
fiberwise-equivalent to a multiple of the cross product x on R®. The notation [B. B] is described in Sections and
The correspondence between the (L.1) and the expression given in [VW94] is described in Section[2.3]
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expression [A]J90] for the Euler characteristic of Masp(P, g). Although this suggests a geometric
interpretation of VW (P), the formal Atiyah-Jeffrey expression is a mathematically dubious infinite-
dimensional integral. It's very unclear to what extent VW(P) is well-defined, and the technical
challenges involved are at least an order of magnitude greater than those of the Donaldson invariants.

1.3.1 Euler characteristics of instanton moduli space

Many instances of the S-duality conjecture have been verified by assuming that B = 0, using “the Euler
characteristic of Mgp” as a working definition of the Vafa-Witten invariant, and then computing
x(Masp) via algebro-geometric methods.

For example, when X = K3, using partial results about the Euler characteristics of M asp, Vafa and
Witten proposed [VW94] §4.1] that the partition functions for G = SU(2) and G = SO(3) should be

10189790756178504975 16

Zsu2)(q) = 37 2(5 + 09 +30q" +3200q° + - + : g+
Zso (q) = 472(% + 09" + 0 + 209612842 + 503562304 + 6791454724/ + ..

16
- 213799744095742270922824975q 4o

Here, the generating functions for the Euler characteristics are inside the parentheses, and differ from
the partition function by an overall factor of 372 or g2, respectively. The denominators apparently

result from orbifold singularities in certain M gp.

If we define the parameter 7 in the upper-half-plane by the relation ¢'/2 = ¢/*, then Zgy(,) and
Zso(3) are periodic functions of 7, and the g-series are Fourier series. The groups SU(2) and SO(3)
are Langlands-dual to each other, and the S-duality conjecture relates their partition functions. In
this case, they obey the “modular relation”

Zsu(ay (-1/7) = (27)*Zso(3) (7).

Note: this is especially remarkable since if Z(7) is an arbitrary periodic function, then there’s no
reason to expect that (27)'2Z(-1/7) is also periodic.

For more examples of these sorts of formulas, see the recent article [Wu08]], and the references
therein.

Despite this success, many troubling technical issues remain to be addressed. For example,
1. When is it safe to assume B = 0?
2. How should singularities of M asp be counted?
3. To what extent is the Euler characteristic independent of the metric?

4. How does the choice of compactification affect the Euler characteristic?

The first question of the vanishing of B is partially addressed in Remark 2.1.4} with further results for
the Kihler case in [VW94], §2.4].
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Figure 1-1: An idealized view of Myw: while deforming the metric g, on M, the Euler char-
acteristic of M agp can change. Any change to y(M ssp) should balance with the creation or

destruction of points in Myw\M gsp.
Myw(ge) :
& . /&
} > t

t=0 t=1
(M, g1): : i :

For the second question of singularities, one might employ a suitable transversality theorem, such as
the generic metrics theorem for ASD connections. Then one must check that the invariant either
does not depend on the perturbation, or find a suitable wall-crossing formula.

DS
Masp (g—l)

Third, as the metric changes, the topology of Msp can change, and y(Msp) is not invariant.
However, we should expect some compensation in the full moduli space My, as in Figure|l-1lon
page[l4] In this thesis, we began to work out models for these changes in topology in Chapter 5} and
on the Uhlenbeck boundary in Chapter[9]

Finally, we expect to better understand the choice of compactification when we complete the program
of Chapter [9] Other work by Li and Qin contrasts the Uhlenbeck and Gieseker compactifications in
their study of blowup formulae [LQ99}[LQ98, LQ02].

1.3.2 Formal similarity to Seiberg-Witten

We will be primarily interested in the case C = 0, for which the equations reduce to

d,B =0,
F;+%[B.B]=0.
Compare this to the Seiberg-Witten equations for a U(1) principal bundle P’ and a pair (A’,¥) €
Ap/ X QO(X, $+)
dar'¥ =0,
Fi-p ' (Y®W¥*),=0.

Both sets of equations can be regarded as the condition that self-dual curvature has a harmonic

“square root” in respective representations. Specifically, B is a square root of F with respect to

the quadratic map -1 [B.B], while ¥ is a square root of F}, with respect to the quadratic map
(Y e YY),

P 0
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Chapter 2

Fundamental energy identities

2.1 Energy identities

Let (X, go) be an oriented Riemannian four-manifold with boundary, equipped with a principal
bundle P — X. We define the gradient energy density, which is the measure given by

Ugrad (C, A, B) = [VW(C, A, B)[* dvol = (1 |daC + d;B|” +|F; + 4 [B.B] + :[B, C]|") dvol. (2.1)
Correspondingly, we define the gradient energy
erad(Cr A B) = [ pyaa(CoAB) = 3 [daC+ d3B + [E; + 4 [B.B] +[B.CIF.  22)

so that solutions to the Vafa-Witten equations are precisely those configurations for which g, = 0.
We gain tremendous insight by rewriting &,.4, integrating by parts and applying the Weitzenbock
formula. Several of these ideas are also explained in [VW94] §2.4.

We begin by expanding a few terms:
corad = [daCI + 3 | d3BI + [ (daC-d3B)+
+|F5+ 3 (B-BI + £I(B.CIP+ ¢ [ ([B-B]-[B.C)+ [ (Fi-[B.C]).
To deal with the cross terms, note that
(FX N * [B, C]) + (dAC A *d;B) =—d (dAC A B> ,

and
([B.B]-[B,C])=([[B.B]-B],C) =0,

since [[B. B] - B] vanishes by the Jacobi identity (A.24)). Thus

egrd = 3 [daC|” + 3 |d;B|” + |F4 + § [B.B]|” + 5 |[B, C]|" - fax (duCl-<Bl),

15



where All, Bl, Cll are the pullbacks of A, B, C to dX. This proves:

Theorem 2.1.1. If X is a closed oriented four-manifold equipped with a principal bundle P — X, then
every solution (C, A, B) to the equation VW (C, A, B) = 0 satisfies

F{+1[B.B]=0, (2.3)
dAC = d;;B = O,
[B,C] = 0.

Remark 2.1.2. For any fixed A and B, the equations (2.3) are linear in C. In particular, if A is an
irreducible SU(2) connection, then the kernel of

da: Q%(X;9p) — Q'(X;0p)

is {0},s0 C =0.

We proceed with our manipulation of &g,q by expanding the remaining term and using the Weitzen-
bock formula (B.17)) to obtain

egud = 3 [daCl” + | FI* + & [[B.B]I” + 5 |[B.C]I* + 3 | VB + (24)

+ % X(S|B|2_6W+'<B®B))_,/aX<dA"C”'*B”>_%faX<B”'(dAH*+N)B”>.

A simple consequence is:

Theorem 2.1.3. If X is a closed manifold such that the quadratic form (see Section|[B.4)
s—6W* e QV(X;Sym*(A>* T*X))
is everywhere positive semi-definite, then every solution (C, A, B) satisfies

F; =0, [B.B]
VB =0, [B,C]
dAC =0.

=0,
=0

b

Remark 2.1.4. The condition s — 6W* > 0 is highly restrictive. According to the Weitzenbock
formula for Q>+ (X;R), this implies that every self-dual two-form is covariantly constant. Since any
nonzero covariantly constant self-dual two-form determines a Kéhler structure on X, there are three
possibilities for the Betti number b5 when this condition could occur:

. b; =0.
e by =150 X is Kdhler.
« by =350 X is hyperKahler.

16



Turning now towards obtaining a priori estimates using &,,4, we make one final substitution
IF3I? = 3 IR+ [ (FanFa). (23

to obtain

egrad = 3 [Fal*+1 [ VaB|"+3 |daCl"+ 5 |[B, CI[ + & [[B- B+ 55 / (s|Bf -6w* - (Bo B)) +

grad = 2 A 1 A 2 A 1 > 64 . 12 X
w3 [ (FanEa) = [ (duclsBl) -3 [ (B (g« M) B).
X 0X 0X

In analogy with [KMO07] Definition 4.5.4, we define

Euop 1= AX(dAcl‘-*Bll)+§AX (B”-(dA*+pD(N))B”>—%/X(FA/\FA),
= (JEA + 2 [T4BF + 31daCP + 4 |[B,CIF + & |[B-BIF + s BF — s W (B o B)) ol

€an ::/Han-
X

Note that &, depends only on the boundary values and the topological type of the principal bundle.

These quantities have the following significance. Since €graq = €an — €top> We have the inequality
€an 2 8top>

with equality holding precisely for solutions. In particular, &, is an a priori upper bound on &,, for
solutions. Ideally, we would like to use this to obtain an upper bound for | F,4||. For simplicity, we set
C =0 to obtain

|Fal* = 26005 + fX(W+'(B®B)—%SIBI2)—% V4B|* - % [[B.B]|’. (2.6)

In the ASD case where X is closed and B = 0, we get the standard topological bound[|on 2é,, by a
multiple of the “instanton number.” For both the Seiberg-Witten equations [KMO07] and the PU(2)
monopole equations [Tel00, [FL98] where this topological term alone does not suffice, the standard
trick is to use the quartic term. If the quartic term 55 |[B.B]|* were positive definite, it would
dominate the Riemannian curvature terms. Unfortunately this is not the case, since the quartic term
vanishes whenever B has rank one. Instead, the situation is analogous to Hitchin’s equations for
Higgs pairs [Hit87], where a priori L? bounds fail.

2.1.1 The Vafa-Witten Chern-Simons functional

In the spirit of [KMO07] §4.3, we show that when X is a metric cylinder R x Y the Vafa-Witten
equations over X are the gradient flow of a functional over Y. Define

VWCS(A”,B”,C”)::%]CS(A”)+/ (dA”C“/\B”)+§/BH nd:Bl,
Y Y Y

'In this case, our bound is actually an equality: 2¢,,, = (277)*k from (C.1).

17



where CS(All) is given by CS(Al, A¢) of (C.2), for any fixed connection A.

We compute

% =d, + Bl + xd,Cl,
W(S—V(\j]”C:S = — % dAB“.

Let A be a connection over X in temporal gauge, B € Q%>*(X;adp), and C € Q%(X;adp). The
self-duality condition for B is B* = »Bl. Some consequences of (B.10) include

Fy=Fy +dtan (Al - NAD, (2.7)
d,B = *Bll + xd, « Bl + N « Bl + dt A xd4Bll,
dAC = dACH +dt A C

In each of these components, the gradient flow terms for the variables A, B, and C are

Al — % =« (2F; +1[B.B] +[B,C])!,
. dVWCS
| ovVWLs * I
B (SBH = *(dAB-‘rdAC) s
. OdVWCS
I R * 1

Therefore, the gradient flow for VWCS is given by the zeroes of

2

IH . OVWCS 2 1‘ . SVWCS 2 IH .| SVWCS
—[|A" - + = + - -
2 SAl 2 OBl 2 SCl

=3 [daC+d;B|" + | F} +§ [B.B] +3[B.C]| .

2.2 Scaling

The Vafa-Witten equations transform nicely under scaling the metric by a constant factor. For
any 7 € R, consider the metric e?7g,. We show that under scaling, the space of solutions remains
essentially unchanged.

We define the scale transformation of € R on the parameterized configuration space C x Met by

n-(C,A,B,g)~ (e"C, A, e"B,e*g).

18



Scaling transformations act as follows:

VaB~ e"V 4B,
VaB ® V4B + eV 4B ® V4B,
|VAB[* — e |V B[,
|V 4B dvol — |V 4B|* dvol.

Similarly, the following are examples of scale-invariant measures:
|VaB[* dvol, |F4|*dvol, |VaC[*dvol, |B[*dvol, |C|*dvol, Ugras> Han-
Finally, for A = A, + a, we have the scale-invariant norm

eFH14IPT |7k (Ca,B),, - (2.8)

Note that g4 is scale-invariant. Though it's not hard to see more directly, we can use scale invariance
to deduce that solutions are preserved by scale transformations since
VW(e ™ C,A,e"B,e*g) =0
< &5rd(e7"C, A, "B, e¥g) = 0
> £4rad(C,A,B,g) =0
— VW(C,A,B,g) =0.

The situation is slightly worse for conformal transformations, i.e. when 7 € C*°(X) is not necessarily
constant. The expression
Fi+3§[B.B]+3[B,C]

is conformally invariant, however the other Vafa-Witten equation depends on d#. We give an explicit
description of how the equations depend on the metric in Theorem[5.2.1]

2.3 Relation to Vafa and Witten’s identity

In order to make contact with their notation, we wish to explain the equivalence between (2.4) and
Vafa and Witten’s identity (2.57) from [VW94]:

s+ k]2 1 1 1 2
—:ﬁ'/Xd‘lx\/gTr (F+ij+Z[Bik’le]gkl+E[C’Bij]) +

2e?
. 2
+(DIBy;+ DiC)’)
1 1 1
= — d4 T (F+i'2+_ D;B;; 24 D,'C2+— B, Bir || Bir, Bir
3t J 4T (Fi? + L(DiBy)* + (D) + 1 (Bt By [y By

1 1 1
+Z[C)Bij]2 + ZBij (g(gikgjl - gugik) R+ W+ijkl) Bkl) .
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Their notation conflicts with ours: physicists prefer Hermitian matrices to skew-Hermitian matrices.
They convert skew-Hermitian matrices to Hermitian matrices by dividing a skew-Hermitian matrix
by v/~1. Vafa and Witten’s commutator leaves implicit the necessary factor of v/~1 to obtain a
Hermitian operator from a commutator. Thus we perform the substitutions

F*w+\/-1F*, Bw~+-1B, Cw~+-IC, [X,Y]~V-1[X,Y],
to obtain the skew-Hermitian version of Vafa-Witten’s identity:
; 2
|s]? + |k = f (-Tr) ((F*ij—i[Bik,le]g ~1[C, B;])’ + (D’B;; + D;C) ) (2.9)

2-/;(( TI‘) (P+ 2 4 i(DlBij)z (D C)Z 1[ 1k:Bjk][BirsBjr]
+3[C, By ]* + 1Bij (2(gigt — gugix) R+ Wijk) Bur) .

Note that —Tr(C; C,) is positive-definite on skew-Hermitian matrices, so we can identify it (up to a
positive constant) with our positive-definite inner product (C;C,).

Theorem 2.3.1. On an oriented four-manifold without boundary, in an orthonormal frame, the follow-
ing identity holds:

(D 2 (Bao Bl ~2[C 1) + (T8 + T0,C)')
= /X<(FX i+ 5 (VaeB)y;” + (VaiC)” + 75 [Bik By ] [Birs Bje] +

+ g [C Bz]] (é5(5ik5je - 8i€8jk) - V\/,-J;-kg) BijBk€> .

This expression should be compared with the skew-Hermitian version of Vafa-Witten’s expression,
. The only significant difference is the opposite sign convention for W;,.

Proof. 1t suffices to show that is
Egrad = / (((FZ),] -1 [ 1k:Bjk] -2 [C,Bij])z + ((VA,]'B),-]- + VA,,'C)2> , (2.10)
and is

Egrad = f((FZ 2+ 5 (VaeB);;” + (VaiC) + L6([Bl'leJ‘k])2+

i ([C Bz]]) % (Lz (81k8]€ i€6jk) - %I/Vz;kf) BijBk€> . (211)
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Expanding out (2.10) with B = 1B;;e'/ and F; = 1 (F;);;e” in an orthonormal frame,

T2
SgradZ/X<% (eivA,iC_%aj(vA,jB)ikeik))’z+(%(F:«r)ijeij"'s_lz[Bij>Bk€]eij-ek€+i[Bijac]eij).z)
:L<% eivA,iC"‘ei(vA,jB)ij).z"'(%(Fz)ijeij_%[Bik:Bjk]eij"'i[Bij>c]eij)2>
:%A(((Fz)i]’—%[Bik,B]’k]—%[C,Bij])z'i‘((VA,]‘B),‘J"FVA,,‘C)Z).

Similarly, for (2.11),

eraa = [ (3(daC)” + (F)” + & [B.B]” +4 (VaB)” + 1 [B.CI” +4B- (3s + W*) B)
= [ (H(evai) o (§ (Ey ) o s (BB e0) o4 (3 (waB) o)
+3 (3 [By Cle)” + 1Byel - (s + 3W*) Biee™)
=1 fX ((Fg),.j2 +3(VaeB);;? + (VaiC)’ + % [Biks Bjx| [Bies Bje] +

+3[CBy] + 1 (25(0udie — Siedjk) — Wiiee) B,-jBkg> :
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Chapter 3

Analytic results

31 An L*®boundonB

Using a technique of Taubes [Tau82, p. 166] (also described in [Law85, p. 76]), we combine the
Weitzenbock formula with Morrey’s mean-value inequality to deduce a bound on || B|; . in terms of
Bl

3.1.1 'The Weitzenbock estimate for B

Theorem 3.1.1. Let X be a smooth closed oriented Riemannian manifold. There exists a constant C
with the following property. For any principal bundle P — X and any L? solution (0, A, B) to the
Vafa-Witten equations,

|Bl= < C B

Proof. By Theorem [3.3.8, we may assume that A and B are smooth. By the Weitzenbdck formula
(B.18)), any solution (0, A, B) satisfies
ViVaB=(-3s+2W*")B-3}[[B.B].B],

so pointwise,
(B-ViVAB) = (B-(-is+2W*)B) - 1|[B.B]|.

Since X is compact, we get a pointwise bound of the form
(B-V3VaB) <A|BJ

for some constant A depending only on Riemannian curvature of X. Theorem yields the desired

estimate
| Bl < C[B] .-
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3.1.2 Subharmonicity of B

Theorem 3.1.2. Let X be a smooth closed Riemannian manifold. For all A > 0 there are constants {C, }
with the following property. Let V. — X be any real vector bundle equipped with a metric, A € Ay
any smooth metric-compatible connection, and o € Q°(X; V') any smooth section which satisfies the
pointwise inequality
(0-ViVaa) < Aol
Then o satisfies the estimate
lolz~ < Callall:.

Proof. Naively, our goal is to apply Corollary with u = |g|. Two complications arise: it doesn’t
satisfy the hypothesis u > 1, and u is not necessarily smooth where ¢ = 0. Instead, in Lemma

we show that
A\/l +|of* < /\\/1 + ol

Thus Corollary|3.1.6/applies to u = /1 + |o|*, and we obtain

2 2 2
loli~ = [V/1+1o Viell

We dispense with the constant term via homogeneity. For any constant & > 0, we have the following
sequencce of implications:

~1=(Cvol(X) 1) + Cy o .

2 2
-1<Cy
L L2

(0-V4iVa0) < Aol
(ao - ViV aaa) < Aaol,
lac 7w < (Cavol(X) ~1) + Cy ac |7z ,
lolf= < (Cavol(X) = 1) /o + Ca a7

Taking a — oo, we get
loli~ < Crloli:.

Lemma 3.1.3. Suppose that f is a function such that

fec([0,00)),
f20,

f'(x) >0,

f"(x)

Pl 20

(For example, the hypotheses are satisfied for f(x) = \/k? + x with any positive constant k.) For any
vector bundle V- — X with metric connection A, and any section o € Q°(X; V'), we define

s:= f(lof’).
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Then
1As < (f'(|o[*)o - V3Va0).

In the case f =V k?* + x, we get

MK+ |0|2 < w k2 + |0|2.

k2 + |a|2

Proof. We compute
iVs = (f’(|0|2)0-VA0),

(o) (<o ViTa0) - (|w|2 v2lop LU0 |a||2)) .
)

1As 5
f'(lal%)

f’<|0|2>0-vmo>—f'<|o|2>|wa||2(1+2|a|2 J}'f((||5||z>)

IN
— —

< f’(|0|2)0-VZVA0).
In the case s = \/ k2 + |o[’, the inequality becomes
0-V,Va0
vk < = 93] < T i,
k2 +|of k? + o]

3.1.3 Morrey’s mean-value inequality

We reproduce the full statement of [Mor66, Theorem 5.3.1, p. 137] in Theorem Then we adapt
the result for the Laplacian on a manifold in Corollary

3.1.3.1 The weak Laplacian on a domain

Let G c R” be a bounded domain with v > 3. Let «, 8 denote indices ranging from 1 to v. Suppose
we have a collection of functions

a*f e L*(G), b*el'(G), c*eL'(G), deL"*(G).
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Suppose further that there exist positive constants m, M, Cy, g such that

m|A” < a®(x)AAg forall A e RY and ae. x € G, (3.1)
lall gy < M,

P:=n\/|b]" +|c/* +|d| e L"(G)

|P in(B(xo)r)ﬁG) < Cortt for every xo € G, 7> 0.

Definition 3.1.4. Given functions a*#, b*, c%, d satisfying , we define an operator A4 based
on the formula
Agpea = “—04(a™F g + b*) + %0, + d”.

1

More precisely, for u € Ly,

, we define A ;.4 (1) to be the distribution given by
(- Agpea(u) = / ((0a0)(a*fopu + b*u) + {(c*0qu + du)) forall { e C(G).
G

For p € [1,v), this gives a continuous map
7P P
A“th : Ll,loc(G) - L—l,loc(G)’
i.e. our test function ¢ makes sense when extended to the dual space

(L2100 (G)) = LP(G)  or (L00)" = L5 = Lip (G).

3.1.3.2 Morrey’s mean-value inequality

Theorem 3.1.5 ([Mor66, Theorem 5.3.1, p. 137] ). For any fixed integer v > 3 and for any positive real
numbers m, M, Cy, y1, A, there exists a constant C such that for any bounded domain G c R" and for
any functions a*f, b*, c*,d, U on G which satisfy and

U L2,,,(G) nL2(G),

U>1,
Aapea(UY) <0 for some A € [1,2),

there are estimates
2 —y 2
Ul L (Bxo,r)) < €O U 12(B(xg R 1a))
for all xo, R, a such that a € (0,R] and B(xo,R + a) c G.

3.1.3.3 'The Laplacian on a manifold

Corollary 3.1.6. Let (X, g) be a smooth Riemannian four-manifold of dimension n > 3. Suppose
Q € X is a precompact domain with smooth boundary. There exist positive constants Ryax and {C) },
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such that for any constant A € R and any function u € L?, _(Q) n L*(Q) satisfying

1,loc

u>1,
Au < Au,

there are estimates
2 oc —n 2
[u] e (B xRy < Cya [l 228 (x R 4a))
forall x € U and all R, a € R such that both 0 < a < R < Ry,x and B(x,R+a) c Q.

Furthermore, if X is closed, then we can find C) such that

2
[u]fe(xy < Ca H”HiZ(x) :

Proof. Recall that in a coordinate chart,

1 g
-——0,\/gg"0;.
\/§ \/_ J

We obtain A,p.; = A — A from Definition if we set

A=

aocﬁ :gaﬁ’
b* =0,
1
= ——g*(35./3),
i BV
d=-A\.

Thus
Au<iu < Agqu <0.

Since Q) is precompact, we can find finitely many geodesic coordinate balls { B(x;, 4R;)} such that the
{B(x;, R;)} cover Q, and each B(x;,3R;) n Q is connected. Set Rp,,x = min {R;}. Since the metric is
smooth, we can find constants m, M, Cy, y; satisfying for all B(x;, 3R;)nQ simultaneously. (Note
that the C, of depends on A.) We take C* as the corresponding constant C of Theorem

Any ball B(x, R+ a) with 0 < a < R < Ry, is contained in some B(x;,3R;). Thusif B(x,R+a) c Q,
we get the desired estimate

2 _ 2
[4] e (B xRy < Cyea™ |9l 228 xRva))
in the coordinate chart for B(x;, 3R;).

In the case when X is closed, we may cover X with finitely many geodesic balls B(y;, Rinax ). Then

—-n

2 2 ocp-—h 2 oc 2
141 oy < 02 {17y, ) | < 000 { IR 73 20y | € O R 117250

so we may take Cy = CX*°R;" O

max*
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3.2 Coulomb slices

3.2.1 The Kuranishi complex

The most fundamental tool for understanding M sqp is the complex associated to an ASD connection
A given by

d+
0 — Q°(gp) 2 Q(gp) —> O>*(gp) —> 0. (3.2)

The cohomology groups HY each have a geometric interpretation: HY detects reducible connections,
H is the tangent space TyM asp, and H3 measures the failure of transversality. In this section, we
study the corresponding complex for the Vafa-Witten equations.

The complex associated to the Vafa-Witten equations is of the form

0 1
d(C,A,B) (C,A,B)

d
0— QO(QP) - QO(QP) X Ql(gp) X Qz’+(gp) - QI(GP) X Qz’+(gp) — 0,

where d(lc’ AB)

of infinitesimal gauge transformations. These maps d?c’ 4,3 and d(lc’ A.B)
VW(C, A, B) = 0.

is the linearization of VW at the configuration (C, A, B), and d?c 4.8 8ives the action

form a complex whenever

The action of g € Gp on (C, A, B) € Q%(gp) x Ap x Q>*(gp) is given by

(C,A,B)~ (gCg™',A-(dag)g ', gBg™").

The Lie algebra of Gp is Q°(gp), and the corresponding infinitesimal action of £ € Q%(gp) is

d?C,A,B) 1 Q%(gp) —» Q%(gp) x Q' (gp) ® Q> (gp),

(€. C]
d?C,A,B)(f) = _dAf
(€, B]

The linearization of VW at the point (C, A, B) is given by

o () de clcal-Bal e
(C,A,B) ’ L[B, ] +dta +3[B.b]-3[C,b] |

The reason d?C,A,B) and d(lc’A’B)

solutions. The following equivariance condition on VW is a consequence of the “gauge principle”
that each individual operator in the expression for VW is gauge-equivariant:

form a complex is roughly that gauge transformations preserve

; G po- daC +d;B)g™!
VW(gCg™, A~ (dag)g™), gBg™)) = g(daC + di1 33
(¢Cg (dag)g™>8Bg™) (g(F;{+§[B.B]+5[B,C])g‘1 (3.3)
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By differentiating (3.3)) we obtain

1 £d,C+d"B
dic.am °dican(8) = ( &, F [+ 1 [%.;] ! ][B, c]] )

Alternatively, it’s simple to compute this composition directly with assistance of the identities

dy[§B] = -[da§.B] + [§,d}B],

(&, [B-B]] =2[[¢,B]-B].
We compute
g o (f)_( da [, C] +d; [£, B] - [dad, C] + [dad. B] )
(CAB) ZRCARNT T\ —didad + 3 [[€ B]. B] + 3 [[§ B], C] - 3 [[§,C], B]
B ( [£,dsC + d3B] )
“\ [&Fi+5([B.B]+3[B.C]] ||
The dual complex is
0 — 0'(g) ¥ 0 (g5) " (g) % 2'(a0) ¥ 0¥ (01) " (g) — 0,
These codifferentials are
5 d; +3[b- B]
d(IC*AB)(b): ~[4,C]-[a.B] o +dib ,
d;a +1[b.B]-1[b,C]

and
a
dilam| b |=-([C] +dja +[b-B]).
c
Again we verify the composite

d?SAB>°d<‘c*AB>( b )=—[d2ﬁ+%[“ B|.C]~d;(d3b~[a.C]~[4.B])+
[(da+4[b.5] -3 [bC]) 5]
C+d;B)]+[b-(F;+4[B.B]+1[B,C])]),

by using the identities



3.2.2 'The quadratic expansion
Theorem 3.2.1. The map VW(C, A, B) has an exact quadratic expansion given by
VW(C+¢,A+a,B+b)=VW(C,A,B) +d( 4p(c,a,b) +{(c,a,b),(c,a,b)},
where {(c,a,b), (c,a,b)} is the symmetric quadratic form given by
{(c,a,b),(c,a,b)} :=[a,c]-[a.b]@i[ana] +i[b.b]+1[b,c].
Proof. Expanding,

VW(C+c¢,A+a,B+b)=ds,(C+c)+d;,,(B+D)
®Fi,+5[(B+b).(B+b)]+3[(B+b),(C+c)]
=VW(C, A, B)+
+[a,c]-[a.b]+[a,C]+dac—[a.B]+d;b
edia+ifanal" +L[b.b]+1[b,c]+L[B.b]+1[B,c]+1[b,C]
= VW(C, A, B) +d(lc,A,B)(C>a’b)+
+[a,c]-[a-b]®i[ana]l” +L[b.b]+1[b,c].

3.2.3 'The slice theorem

Given fixed (Cy, Ay, By), we look for solutions to the inhomogeneous equation VW(Cy + ¢, Ag +
a, By + b) = . By Theorem[3.2.1} this equation is equivalent to

dl

(Co,Ao,Bo)(C’ a,b) +{(c,a,b),(c,a,b)} =y — VW(Co, Ao, Bo). (3.4)

To make this equation elliptic, it’s natural to impose the (inhomogeneous) gauge-fixing condition
0,% —
d (G a0 (63 b) = C.

If we define

. 70,% 1
D(CO,AO’BO) T d(Cg,Ao,Bo) + d(CO:AO»BO)’
l// = 1)”0 - VW(CO,A(), Bo),

then the elliptic system can be rewritten as

D(C0>A07BO)(C’ a, b) + {(C> a, b)’ (C’ a, b)} = ((’ 1//) (3-5)

This is situation is considered in [FL98]| eq. (3.2)] in the context of PU(2) monopoles. Many of their
theorems apply in general to any gauge-invariant equation of the form (3.4)) such that d%* + d! is
elliptic.
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First we define a slice for the quotient space Bp completed to L? with k > 2.

Definition 3.2.2. For k > 2,and (C, A, B) € Cﬁi, we define the ball
L2 *
Beys(e) = (C A B) + {(c,a,b) |d07, 4 (c.a,b) =0, [(c.a, D)l < e}.

Under the restriction k > 2, we get a slice theorem over a closed manifold:

Theorem 3.2.3 ([FL98, Proposition 2.8]). Let X be a closed, oriented, Riemannian four-manifold, let
P — X be a principal bundle with compact structure group G, and let k > 2 be an integer. Then the
following hold.

2
1. The space BIL," is Hausdorft;

2. The subspace B;’L" c Bf," of (Co, Ao, By) such that Stabc, 4,3, = Center(G) is open and

2 2
is a C> Hilbert manifold with local parameterizations given by  : Bé’; Ao.B,(€) — BIL," for
sufficiently small € = €(Cy, Ao, By, k);

* 2 . L2
3. The projection 7 : Cp’Lk - BP’Lk is a principal Gp bundle;

4. For (Cy, Ay, By) € C, the projection 7 : B¢, 4,,5,(€)/Stabc, 4,8, = B is @ homeomorphism
onto an open neighborhood of [Cy, A, By | € B and a diffeomorphism on the complement of
the set of points in B¢, 4,,5, (€) with non-trivial stabilizer.

Alternatively, we can restate this as the charts

LZ
(BCI(;,Ao,Bo (E) X gLiH)/StabCo,Ao,Bo = CLi

. 2 . . . . . . . 2
being GY+-equivariant diffeomorphisms onto their images, and covering C*+.

3.3 Regularity and elliptic estimates

First we summarize the results of [FL98, §3], which apply almost verbatim to the Vafa-Witten
equations upon replacing the PU(2) spinor @ by the pair (C, B).

3.31 Global estimate for L? solutions to the inhomogeneous Vafa-Witten plus Cou-
lomb slice equations

Theorem 3.3.1 ([FL98, Corollary 3.4]). Let X be a closed, oriented, Riemannian four-manifold, let
P — X be a principal bundle with compact structure group, and let (Cy, Ay, By) be a C* configuration
in Cp. Then there is a positive constant € = €(Cy, Ag, By) such that if (¢, a, b) is an L? solution to (3.5)
over X, where ({,y) isin L and |(c,a,b)| . <€ and k > 0 is an integer, then (c,a,b) € L}, and
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there is a polynomial Qx(x, y), with positive real coefficients, depending at most on (Co, Ay, Bo), k,
such that Qx(0,0) = 0 and

@bz, o < Qe (160, oy 16Dy )
In particular, if ({,y) is in C* then (c, a,b) isin C* and if ({,y) = 0, then

I(eab)liz, < C e b) g

3.3.2 Global regularity of L? solutions to the Vafa-Witten equations for k > 2

Theorem 3.3.2 ([FL98, Proposition 3.7]). Let X be a closed, oriented, Riemannian four-manifold, and
let P — X be a principal bundle with compact structure group. Let k > 2 be an integer and suppose that

(C, A, B) is an L; solution to VW(C, A, B) = 0. Then thereisa g € Q’;"“ such that g(C, A, B) is C*
over X.

3.3.3 Local interior estimate for L? solutions to the inhomogeneous Vafa-Witten
plus Coulomb slice equations

Theorem 3.3.3 ([FL98, Corollary 3.11]). Let X be a closed, oriented, Riemannian four-manifold, and
let P — X be a principal bundle with compact structure group. Suppose Q) c X is an open subset such
that P|q is trivial, and T is a smooth flat connection. Then there is a positive constant € = €(Q) with
the following significance. Suppose that (c, a, b) is an L2(Q) solution to the elliptic system over Q
with (Co, Ao, Bo) = (0, T,0), where ({,y) isin Li(Q), k > 1 is an integer, and [ (c, a, b) | 4o < €. Let
Q' € Q be a precompact open subset. Then (a, ¢) is in L7 (Q') and there is a universal polynomial
Qx(x, y), with positive real coefficients, depending at most on k, Q', Q, such that Q(0,0) = 0 and

|(c.a, b)HLiH,r(Q’) < Qxk (”(() ¥) HLi,r(X) [I(c, a, ) HLZ(X)) :
If (¢,y) isin C=(Q) then (¢, a,b) isin C°(Q') and if ({,w) = 0, then

I ab) iz oy < Cleab) -

3.3.4 Local estimates for L? solutions to the Vafa-Witten equations on a ball

Theorem 3.3.4 (Uhlenbeck’s gauge-fixing, [Weh04; §6], [UhI82, Theorem 2.1 & Corollary 2.2], [FL98),
Theorem 3.13] ). Let (X, gy) be a Riemannian four-manifold without boundary, let P — X be a
principal bundle with compact structure group, and let 2 < p < 4. Let D, , denote the geodesic ball of
radius r centered at x. Then there exists constants C, € > 0 such that the following holds:

For every point x € X, there exists a positive radius r, such that for all r € (0,r,], all smooth flat

P
connections T € Ap(Dy.,,), and all LY connections A e AILJ1 (Dx,r) with |Eal s (p, ) < € there exists a
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2
gauge transformation g € Qﬁz(Dx,,) such that

di(gA-T) =0,
(gA-T)" =00ndDy,,
62~ Tl17(.,) < ClEalirco,

Furthermore, if Aisin LY (D) for k > 2, then g isin LY (D). The gauge transformation g is unique
up to multiplication by a constant element of G.

At this point, we must deviate slightly from [FL98], since we have no estimate of the form |B I* <
C|[B.B]|* (c.f. [FL98, Lemma 2.26]), so F} does not bound B. Instead, we get the following analogue
of [FL98, Corollary 3.15] by combining Theorem and Theorem

Theorem 3.3.5. Let Dy ; c R* be the open unit ball with center at the origin, let U € Dy, be an open
subset, let P — Dy be a principal bundle with compact structure group, and let T' be a smooth flat
connection on P. Then there is a positive constant € such that for all integers k > 1 there is a constant
C(k, U) such that for all L% solutions (C, A, B) satisfying

2 4 4
||FAHL2(D0,1) + ||B||L4(Do,1) + ||CHL4(D0,1) <6
there is an L% gauge transformation g such that g(C, A, B) is in C*(D, ) with d*(gA—-T) = 0 over

D(),l and
|8(C, A B) 12 (v < C(ICH 2y, *+ [Fallizpyy + 1Bliao,.)) -

Proof. By choosing e asin Theorem , we can find g such that d; (gA-T) = Oand |gA - T|| L2(Doy) S
C|Fal12(p, ,)- By the Sobolev embedding theorem, |gA — T'|+p, ) < C|Fal 12(p,,)- Upon taking
(c,a,b) = (C,gA - T, B), we are in the situation of Theorem Thus we get the desired esti-
mate. ]

Upon adding the proper factors to make this estimate scale-invariant (see (2.8))), we generalize this
estimate for geodesic balls:

Theorem 3.3.6. Let X be an oriented Riemannian four-manifold without boundary, and let P — X be
a principal bundle with compact structure group. Let D, , denote the geodesic ball of radius r centered
at x, and fix any a € (0, 1). For all k > 1 there exists constants C(a, k), € > 0 such that the following
holds:

For every point x € X, there exists a positive radius r, such that for all r € (0,r,], all smooth flat
connections T € Ap(Dy,,), and all L? solutions (C, A, B) with

2 4 4
|Eal 2o,y + 1Bliso,,) + 1€,y <€

there exists a gauge transformation g € QIL,% (Dy,,) suchthatg(C, A, B) isin C*°(D,,,) withd*(gA-T) =
0 over D, , and

FHg(Co A Bz (o) < C(r T ICH o, *+ IEal o,y + 77 [Bliao, ) -
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3.3.5 Local estimates for L? solutions to the Vafa-Witten equations on a more gen-
eral domain

Using a patching argument, we get an estimate over strongly simply connected domains, which is an
analogue of [FL98, Proposition 3.18]:

Theorem 3.3.7. Let Q) be an oriented Riemannian four-manifold without boundary, let P — X be a
principal bundle with compact structure group. Then there is a positive constant e( Q) with the following
significance. For Q' € Q a precompact open subset and an integer € > 1, there is a constant C(¢, Q', Q)
such that the following holds. Suppose (C, A, B) is a smooth solution over Q such that

2 4 4
|Faltzqa) + [Bllrscay + [Cllisga) <€
Then there is a flat connection T on P|q: and a gauge transformation g over Q' such that

lg(C, A - I"B)”Lﬁ)r(ﬂ’) <C (||CHL2(Q) + HFAHLZ(Q) + HB||L2(Q))'

3.3.6 Regularity of L? solutions not in Coulomb gauge

We use a recent result of Isobe to show that all L? solutions to the Vafa-Witten equations are L3-gauge-
equivalent to a smooth solution.

Theorem 3.3.8. Suppose X is a closed smooth Riemannian four-manifold, P — X is a smooth principal
G-bundle with G compact and connected, (C, A, B) is an L} configuration (not necessarily in Coulomb
gauge!), and VW(C, A, B) = 0. Then (C, A, B) is L3-gauge-equivalent to a smooth configuration.

Proof. By gauge-fixing on small balls D, in which the local regularity theorem applies, we get L3-
trivializations h, , of P over D, such that h; ,(C, A, B) is smooth. Since the transition functions
h1,»hy’ intertwine smooth connections, they define a smooth principal G-bundle P’. The trivial-
izations h; , patch together to define an L3 isomorphism h; : P — P’. The h; ,(C, A, B) determine a
smooth configuration (C’, A/, B’) in P’ such that h(C, A, B) = (C', A’, B').

In order to prove that (C, A, B) is L2-gauge-equivalent to a smooth connection, it suffices to show

2
that there exists a smooth isomorphism h, : P — P/, for then g := h;'h; € g{;z is the desired gauge
transformation. The existence of h; is a consequence of Theorem 3.3.10 O]

Towards proving Theorem [3.3.10} first we recall that the smooth classification of principal bundles is
equivalent to the topological classification:

Theorem 3.3.9 ([MWO06, Theorem 1.13]). Let X be a smooth manifold, and let G be a compact Lie group.
The inclusion of sheaves C*(G) = C°(G) induces a bijection H'(X; C*(G)) - H'(X; C°(G)).

The proof is based on smooth approximation of classifying maps [ X, BG].

From here, there are two routes to Theorem [3.3.10| The first is specific to four dimensions, based on
Sedlacek’s results about characteristic classes under weak limits. The second is a recent approximation
theorem for Sobolev bundles due to Isobe.
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Theorem 3.3.10. Let X be a closed smooth four-manifold equipped with two smooth principal bundles
P and P’ which are L3-isomorphic. Then there exists a smooth isomorphism h, : P — P’

Proof #1. We use the classification results of [Sed82]. If G is connected, then principal bundles over
X are classified by #(P) € H?(X;m;(G)) and p,(P) € H*(X;73(G)). By [Sed82, Theorem 5.5],
7(P) = n(P’"). By Chern-Weil theory, p;(P) = p;(P’). Thus P and P’ are topologically isomorphic.
By Theorem they are smoothly isomorphic. O

Proof #2. 'The theorem is a direct corollary of the following theorem of Isobe.

Theorem 3.3.11 ([Iso09) Proposition 3.2]). Let X be a closed smooth manifold, and let G be a compact

Lie group. For any integer k > 0, the inclusion of sheaves C°(G) — Lz/k(G), induces a bijection

H'(X;C°(G)) ~ H'(X L"(G)).

The proof of Isobe’s theorem is based on the approximation theory of Sobolev maps between manifolds.
N

3.4 Removal of singularities

Theorem 3.4.1 ([FL98| Theorem 4.10]). Let D, , c X be a geodesic ball, and let P - D, ,\ {x} be a
principal bundle with compact structure group. Suppose (C, A, B) is a C* solution to the Vafa-Witten
equations for P over the punctured ball D, ,\ {x} with

/ \(x) (|FA|2 + |VAB|2 + |VAC|2 + |B|4 + |C|4) dvol < oo.
Dy, \{x

Then there is a principal bundle P — D, ,, a C* solution (C, A, B) to the Vafa-Witten equations for P
over Dy, and a C* bundle isomorphism u : P — P|p_ \(x} such that

u*(C,A,B) = (C, A, B) over D\ {x} .

3.5 Uhlenbeck closure

Let X be a closed oriented smooth Riemannian four-manifold, and let { P, - X}, ., be a collection
of Sp(1) bundles indexed by the instanton number k. Following [FL98, §4.5.1], we define the set of
ideal solutions Z My x to be

IMywi = U Myw ke % SYme(X)-
=0

The index ¢ which appears in the above definition is called the level.

We say that a sequence [C;, A;, B, X;| € ZMyw x converges to [ Co, Ao, By, Xo] if for some (or equiva-
lently any) choice of smooth representatives (C;, A;, B;) € Myw k-, the following hold:
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« There is a sequence of smooth bundle isomorphisms g; : Pk_¢,|x\x, = Pk-e,|x\x, Such that
g:(Ci, A;, B;) converges in C* to (Cy, Ay, By) over X\x,.

« The sequence |Fy,|* dvol + 47 Y xex; Ox converges in the weak-* topology on measures to
2 2
|FA0| +4m erxo 6x-

For any real constant b € R, we define the b-truncated moduli space
My ={[0,A,B] € Myw | |Bl. <b}.

Lemma 3.5.1. The truncated moduli spaces /\/li’,w, . satisfy

L M%W,k c M{’,’W’kfor b<b.
2. M(\)Iw,k = MASD,k-

3. My =@ for b <0ork < -Cb* for some constant C.

Proof. All these statements are immediately obvious except for the necessity of k > —Cb* for M3, | #
@. This follows from the Chern-Weil identity, the Vafa-Witten equation (2.3), and Theorem[3.1.1}

0 < |F;|? = 4nk + | FL|* = 4nk + | F|* = 4k + | % [B. B]|? < 4k + 4nCb*.
O

Theorem 3.5.2 ([FL98, Theorem 4.20]). Let X be a closed oriented smooth Riemannian four-manifold.
Then for each k € Z and b € R, the Uhlenbeck closure Msrw,k c ZMyw i is sequentially compact.

Proof. Since |B| . is bounded on MY, ., Theorele.lIbounds |B|| ;- and hence | F} |, .. The level

is finite by Lemma . These observations are sufficient to carry through the proof of [FL98]. [l
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Chapter 4

Estimates for SU(2)

4.1 Algebraic estimates

The starting point for our estimates are the identities of Section in particular (4.1). We are
interested primarily in solutions of the Vafa-Witten equations involving irreducible SU(2) = Sp(1)-
connections over a closed manifold (and restrictions to submanifolds thereof). Thanks to Re-
mark[2.1.2] we need only consider solutions (0, A, B) where the C component vanishes. The main
difficulty in finding good estimates is that [ B. B] can vanish when B is nonzero.

For the Seiberg-Witten equations, the curvature bound analogous to (2.6)) contains algebraic terms

of the form
[Ful? <o~ [ (10 +sloF).

(See [KMO07] §4.5) The trick to controlling this expression when the scalar curvature s is negative is
to complete the square:

_'/X(|CD|4+5|CD|2)=—/X(|CD|2+§5)2+i/X52.

This quantity is manifestly bounded above by the geometry of X, independent of @. Although we
cannot complete the square for the Vafa-Witten equations, by studying the algebraic properties of
matrices, we show that we only lose control of | F4| when the L? density of B must accumulates in a
region where B is almost rank one.

4.1.1 Matrix representations of A>* ® sp(1)

Recall the definition of the product “.” from |A.1.6{and |A.1.7| The function B + |[B.B]|” is a quartic
on sp(1) ® A>* Ty X which is invariant under both the adjoint action of Sp(1) on sp(1) and the
action of SO(T,X) on A%* T} X. We gain insight by studying such invariant functions.

By choosing bases (i, j, k) of sp(1) and
(0,1,0.2,0_3) = (601 + 623, 602 + 631,603 + 612)
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of A>*, we can represent B by a matrix

By Bz Bis
B=| By Bxn B
Bs1 Bsy, Bs;

The action of SO( T, X) x Sp(1) on sp(1) ® A>* induces an action of SO(3) x SO(3) on the space of
matrices M3.; by multiplication on each side separately. Singular value decomposition represents
each orbit by a matrix of the form

B,
B = Bz
B;

Such a matrix is unique up to permutation and flipping pairs of signs. We make the {B;} unique by
demanding that B, > B, > B; >0 or —B; > -B, > -B3 > 0.

The singular value decomposition greatly simplifies many computations. For example,

[B.B] = [(Biic" + Byjo? + Bsko®). (Biic" + Byjo* + Bsko) |
=2[Byi(e™ + e*).Byj(e® + ') ] + cyclic permutations
=2BB, [i,j] (e™ +e?). (e + ') + c.p.

_ 2B, B,(2k)(=2)(e™ + ¢'2) + c.p.
-8B,B;
= —83331
8B, B,

The space of 3 x 3 matrices is stratified by eight families of orbits. as shown in Table [4.2]on page[39]
We provide a more graphical representation in Figure[4- on page[41} which will be explained shortly.
Note that the rank of B determines the rank of [ B. B], and hence F} for solutions, according to Table

41

’ rank(B) ‘ rank(F}) ‘

0
1 0
2 1
3 3

Table 4.1: Possible ranks of F}, given that 0 = F} + 4 [B. B].

4.1.2 Invariant functions on A>* ® sp(1)

An invariant function on Mj,; is thus equivalent to a symmetric function in By, By, B; which is
invariant under (By, By, B;) = (-Bj,—B,, B3). For example, B; + B, + B; is not invariant, while
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B; B, Bj; is invariant. The ring of invariant polynomials is R[«, 8, y], where «, f3, and y are defined by

o =B+ B3+B;,
B = (B1By)* + (B2B3)* + (B3B,)?,
y = B1B,B;.
For example,
IB]* = 2(B? + B2 + B) = 2a.
Thus
[B.B]" = 128((B,B;)* + (B3B;)? + (B, B,)?) = 128,

and
<B . [B-B]) = —483132B3 = —48)/

Thus the three functions
2 2
|BI, |[B-B]|", (B-[B.B])

generate the ring of invariant functions.

The space of invariant quartics is a two-dimensional vector space, generated by a? and f3. Consider
now the invariant quartic function |(B ® B)|*, where © is the traceless symmetric product on A%+
defined in Section We compute

(BoB)=Bic' @' +B56*®0*+B30° @0
=1((2B-B}-B3)o'®c' + (2B5- B2 -B})o*® 0>+ (2B3- B - B})o* ® 0”) .

Since |o! ® 02|* = 4, we get

(B B)[* = % ((2B% - B2 - B%)* + (2B} - B2 - B})* + (2B3 - B} - B3)?)
= $ (B + By + B — (B,B;3)* - (B3B,)> - (B1B,)?)
= (B3~ B)? + (B3 - BY)? + (B} - B})?)
=3(a?-3p).

The quartics |[B. B]|* and |(B © B)|” are both positive semi-definite, and they vanish respectively on

matrices of the form
B; B,

0 and B,
0 B,

A routine computation proves

Theorem 4.1.1. The space of positive semi-definite quartics on A>* ® sp(1) is spanned by nonnegative
combinations of |[B.B]|* and |(B ® B)|’.
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Figure 4-1: Rays in SO(3)\M3,3/SO(3). The numbers label the strata described in Table[4.2]on page
39l

il(BoB)I

|BJ*
A

\J

5|[B- B
|BJ*
#7
-1

For example, |B|* = 2|(B @ B)|* + 2 |[B.B][’, and hence

B =v/2|(BoB)} + % |[B. B

We can now give a nice visualization of the space of (rays of) orbits in M3,3. Consider the functions
on M;,3; — {0} given by
2 2
il(BoB)|" 3|[[B-B] (B-[B.B])
|B[* |B|* B}

b

These functions are SO(3) x SO(3)-invariant and constant along rays. The first two functions
are complementary in that they sum to one. Moreover, they uniquely characterize each ray in
SO(3)\M3.3/SO(3). Plotting these functions, we get a planar region classifying the rays of orbits.
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4.1.3 Completing the square

Introduce the function

s ifs<0,

_{\/gs ifs>0,

so that
—sVa?+ b2 < -9(s)(|a| +|b]).
W*-(Bo B) - is|B]* - % |[B.B]’

<W*-(BoB) /3 9( s)(Z\/_| B)| + |[B-B]|) - &|[B.B]/

= (1w~ V&9()) [(Bo B)| - & (I[B. B+ /39(s)) + &9(s)?
< (IW*|=/&9(s)) (B B)| - & ((1- &) |[B-BI - 9(s)?/e) ¥e > 0.

In particular,
[Falz: < 2ep + R(1+[(BO B)| ) = 35 |[B-B]I7: ~ 3 | V4Bl (4.1)

for some constant R depending only on curvature.

4.1.4 Rank one matrices

We now provide a geometric interpretation of in terms of the distance to rank one matrices.
Define
Z:={Besp(1) ® A>*|rank(B) =1} = {B| [B.B] = 0}.

According to Table [4.2] on page 39} this is a five-dimensional subset of R® which is a cone on
(8% x §2)/Z,. The codimension is four, so a generic B on a four-manifold will intersect Z at isolated
points. Note that Z is the zero set of |[B. B]|’. Assuming that |B,| > |B,| > |Bs|, the distance from B
to Z is given by

dist(B, Z)* = 2(B3 + B%),
where the factor of two arises from the fact that our basis vectors have norm two. We have the
following identity:

(3132)2 + (BzB?,)z + (B3Bl)2 < (B% + B% + Bg)(B% + Bg) <2 ((BlB2)2 + (BzB3)2 + (B3B1)2) .

This leads to
[B.B]|* < 32|B|* dist(B, Z)* < 2|[B.B]|.

In particular,
Cl(BoB)’ - & |[B.B]|* <|B[’ (C - dist(B, Z)?).

In order to lose control over |Fy4|, it'’s necessary for the L?-density of B to accumulate in a region
within distance /C of Z, where C is some distance determined by the curvature.
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4.2 Unique continuation

We have the following simple but powerful corollary of unique continuation for ASD connections.

Theorem 4.2.1. Let X be a simply-connected oriented Riemannian four-manifold, and let P — X be an
SU(2) principal bundle. If A € Ap and B € Q>*(M;gp) satisfy

Ft =0,
d:B =0,

A is irreducible,

then B = 0.

Since F} = 0, by Table[4.] on page[38} B has at most rank one. Let Z¢ denote the complement of the
zero set of B. By unique continuation of the elliptic equation d; B = 0, Z¢ is either empty or dense.
On Z¢ write B=§® w for £ € Q°(Z¢; gp) with (&, &) = 1, and w € Q>*(Z¢). We compute

0=-d;({®@w)=1V4i({®@w)=(Vai)®@aw-E@ (d"w) =dsl.w-E{®d w.

Taking the inner product with £ and using the consequence of (£, &) = 1 that (£,d,&) = 0, we
get d*w = 0. It follows that d4&.w = 0. Note that this pairing is definite, since in components
(vo, V). @ = (V- W, vo@ — ¥ x @). Since w is nowhere zero along Z¢, we must have d,& = 0 along
Z¢. Therefore, A is reducible along Z¢. However according to [DK97] Lemma (4.3.21) p. 150, A is
irreducible along Z¢. This is a contradiction unless Z¢ is empty. Therefore Z = X, so B is identically
zero.
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Chapter 5

Perturbing the metric

5.1 Metrics and conformal structures in four dimensions

5.1.1 Fundamentals

Let (V, go) be an oriented vector space with a fixed “base” Riemannian inner product g, € Met(V).
The purpose of this section is to express an arbitrary Riemannian inner product g in terms of the
“base” inner product g, by using representation theory of the go-orthogonal group. This will allow us
to express certain operators associated with g in terms of the original g, operators in the subsequent
section.

Remark. Unless otherwise noted, all metric-dependent operators and spaces such as Hodge star «,
inner product -, volume form dvol, and self-dual/anti-self-dual forms A%*V* implicitly refer the
base metric gy. Operators and spaces determined by g are denoted by a subscript, i.e. Ag*V*.

Define Hom(A%~V*, A2*V*)_; to be the subset of linear maps with operator norm less than one.

Theorem 5.1.1. Any Riemannian inner product g € Met(V') corresponds (relative to g,) to a unique
pair
(7,m) € R x Hom(A> V¥, A>"V*)_,

such that dvol, = e*1dvol, and the graph of m inside of A*V* is Ay~ V*. Furthermore, Ay* V* is the
graph of the gy-adjoint map m* e Hom(A>+*V*, A2~ V*).

Proof. We will need the SO(4, go)-equivariant map
@ Sym*(V*) - Hom(A>" V*, A>*V*),
u(a® B) = (@ ((@na) AB)).

Explicitly, if {e?, e!, €2, e} is an oriented gy-orthonormal coframe for V*, then with respect to the
bases

{eo nel—e?nede®ne?—ednel,e®ne’—el A ez} for A>"V*,

{eo nel+ened,e®net+ednel,e®red+el e2} for A>*V*,
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we have the following table of matrices for possible inputs. (The lower triangle is redundant because
of symmetry.)

el®el el®e? el®ed

'®e? e"®el Pe2 2®e3
2
H e2®e? e2®el
1
0
0

e3® el
0 0 0 0 O 0 01 0 -1 0
1 0 0 0 -1 0 0O 1 0 O
01 01 O -1 0 0 0 0 O
1 0 O 1 0 0 01
0 -1 0 1 00 0 00
B 0 0 -1 0 0O 1 00
B -1 0 O 0 0O
0 1 O 0 01
0 0 -1 010
-1 0 O
0O -1 0
0 0 1

For example,
u(e®@e')(®net—e*nel)=(x(e®netneP)nel) =1(e?ned+e ne?),
and this answer corresponds to the entry “1” in the second matrix above.
Note that ker  is the span of gy € Sym?*(V*), and when y is restricted to the go-traceless tensors

Sym;(V*), it becomes an isomorphism

u:Sym2(V*) = Hom(A>~V*, A>*V*),

Using the canonical isomorphism V* ® V* 2 Hom(V, V*), we adopt the viewpoint that g, g €
Hom(V, V*). Thus g;'g € End(V') defines a go-symmetric endomorphism with positive eigenvalues.
Therefore, In(g;'g) € End(V) exists, and is go-symmetric.

Consider
gln(gy'g) e Hom(V,V*) 2 V* e V*.

In particular,
goIn(gy'g) € Sym*(V*),

)
1(goIn(g;'g)) e Hom(A> V*, A>*V™).

The corresponding matrix has a singular value decomposition. Any odd function f : R - R when
applied to singular values induces a bi-invariant function

f +Hom(A>V*, A>*V*) — Hom(A> V*, A>*V*).
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We define

m := tanh(u(1goIn(g;'g))) € Hom(A> V¥, A>*V*)_y,
1= 5tr(In(gy'g)).

The metric g is determined by the inverse construction
g=e"goexp(2gy'p~ (tanh™' m)). (5.1)
These constructions give the desired bijection

R x Hom(A>" V*, A>*V*) | < Met(V),
(,m) — g.

It remains to show that # and m satisfy the claimed properties.

We start by showing that dvol, = e*’dvol. We use the formula dvol, = \/det(g;'g)dvol to compute

dvoly = \/det(e?11) det(exp(gy'p'(-+)))dvol.

The first factor yields y/det(e27I) = e*7, while the second factor \/det(exp(gy'p~'(-+))) is one
because g;'p~!(--) is traceless.

Finally, we show that Ay~ V* is the graph of m inside of A2V*. Since g;'g is go-symmetric, we may
choose an orthonormal coframe {e, e!, €2, €3} such that

11% 0O 0 O
-1 _ 0 7’]% 0 0
B85l 0o 0 2 o]
0O 0 O 11%
In(#no11/1213) 0 0
u(381In(g'g)) = 0 In(non2/n3m) 0 ,
0 0 In(#ons/mmn2)
Not1 — N2H3 0 0
Hol1 + H2Y3
" = 0 MoM2 — 131 0
NoM2 + {311
0 0 Not3 — N1H2
No¥s + H1H2

(Compare with [DS89] Lemma 2.3.)
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Note that {#,e°, 17;e'1,€2, n3e3} is a g-orthonormal coframe. Thus
Noe™ M1e 12e75 1 g

2,- % _ 0, 1 2, 3 0\ 52 3,1 0, 3 1,2
Ay V*—span{nome Ae’ —1anze” Ae Hotae” Ae”—1snie’ Ae,otse Ae’ —111ze /\e}

= span {2 More® A e — Matjse” A € }
HoH1 + H2H3

= span{e0 nel—e?ned+ M(eo Ael+e? A e3),~-}
HoH1 + H2H3

=span{(1+m) (e ne’ —e*ne?), -}
= graph(m).
The same type of computation applies to show

A§’+V* = span{e0 nel+e*ned+ M(eo Ael—e? A e3),~-}
HoH1 + HaM3

= graph(m™).

It will be helpful to identify A>*V* with Ay*V*. In light of Theorem the most obvious
identification is the projection

lem*: A2’+V* N A;,-FV* c AZ,+v* ® Az)_V*.

However, the most geometrically relevant identification is isometric:

Theorem 5.1.2. The map e*'(1 & m*)(1 — mm*)~Y/? is an isometry from A>*V* to A3 V*.

Proof. We will verify this lemma by computation. Some care is required since the decomposition
A2V* = A2*V* @ A>~V* is not g-orthogonal. To compute the g-inner product, we instead employ
the formulas

- - - . 1 .~
@ g @3 = @1 A @ dvol, for all @y, @, € A?*V*,
-1
w7 - w3 = w} A w;jdvol™ for all w}, w3 € A>*V*,

_ _ _ _ 1 _ _
—wj - w; = w; Awydvol™ forall wy, w; € A>V*,
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We compute

(¥(1 @ m)(1 = mm*) Vo)  (¢1(1 @ ") (1= ") o)

=e' (1om*)(1-mm*) ™ Pw) A ((1em*)(1-mm*) " w,) dvolg1

_ (1= mm*)2w;) A (1= mm*)2w,) + (m*(1 - mm*)2w,) A (m*(1 - mm*)aw,)
dvol

= (1= mm*) ™ w;) - ((1 - mm*) " w,) = (m*(1 - mm*) " Pw,) - (m*(1 - mm*)w,)

=w, - ((1=-mm*)™" = (1 - mm*) Pmm* (1 - mm*) ™) w,

= Wi - Wy.

5.1.2 Operators associated with a perturbed metric

Theorem 5.1.3. If w € A2V* decomposes under gy as
w=w"Ow e ATV ® APV,
then the g-decomposition is given by the identity

2,+ 2,—
AZHV AZTV

wtew =(1em)(1-mm*) " (0" -mw )+(Qem)(1-m'm)”" (-m*0* +w).
=e¥(lem*)(1-mm*)™/? (6’2’7 (1- mm*)_l/2 (0" - mw’))

+e(1leom)(1- m*m)fl/2 (6_2’7 (1- m"m)fl/2 (-m*0* + w‘)) .

Proof. The second equality follows directly from the first. By Theorem[5.1.1}, the images of 1 & m* :
A>*V* > A*V*and 1 ®@ m : A>"V* - A?V* are manifestly g-self-dual and g-anti-self-dual
respectively. This shows that both terms belong to the appropriate subspaces. It remains to show that
the right hand side is indeed the left hand side.

Collecting on w* and w~, the right hand side is

((1 om*)(1- mm*)_1 -(lem)(1- m*m)_1 m*)w+ +
+ ((1 om)(1l- m*m)_1 -(lem*)(1- mm*)_1 m) w”.

The result then follows from identities in the spirit of

(1-mm) ' m*=m* (1 -mm*)".
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Theorem 5.1.4. For wy, wy € A>*V*, let @; = e*1(1 ® m*)(1 — mm*)~2w,. Then
e?(1e m*)(1-mm*) 2 (w.0,) = @y .@,.
Proof. The restrictions of the products . to A>* and ., to Ay* are both equivalent to the same

multiple of the standard cross product on R3. In particular, they are equivariant under isometry. The
expression in this theorem is the formula for this equivariance. ]

Theorem 5.1.5. If w € A3V™*, then
*gw = € g gy’ (rw),

where g,, := e~*1g is the metric determined by the pair (0,m) € R x Hom(A>~V*, A2*V*)_,.

Proof. Dual to dvol, € A*V* is dvol(;1 € A*V such that under the natural pairing,
dvolg - dvol; =1.
One algorithm for computing «, is to first form the contraction
w - dvolé1 e NV @AV 2 AV,

and then apply g:

xgw = g(w-dvol;') e A'V™,
To obtain the desired form, we rewrite this as
e g, (w-e dyol™)
e g, (gglgo) (w-dvol™)
= e Mgngy (*w).

*ga)

5.2 Perturbing the metric of the local model

Theorem 5.2.1. Let X be an oriented Riemannian four-manifold with metric g,. Consider any pair
7€ Q°(X;R) and m € Q°(X; Hom(A>" V*, A>TV*)_,).

Recall that by e determines a conformal factor, m determines a change of conformal structure,
and together these uniquely determine any new metric g.
For B € Q3" (gp), we define )

B:=(1e®m*)(1-mm*) B,
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so that B € Q7" (gp) by Then

VW (e C, A, e™ B, 5, m) (5.2)
_ e (gngy' (— * daB) + dsC ~ Cdn - gngy'dn. B)
\ e(1em*)(1-mm*) V2 ((1-mm*)Y2(Ff -mF;)+4[B.B]+%[B,C]) )’

Furthermore, to first order in || + |m),

VW (e 1C, A, e™ B, 5, m) (5.3)
~ e*”(d;;B +d,C-Cdn+2ut(m)gy'd;B—dn.B - d;m*B)) +O(|m|+ |Vm| + |dn|)?
B (1@ m*) (F;+1[B.B]+1[B,C]-mF;)+0(Im[*) '

Proof. First we verify (5.2), starting with the Q!(gp) component. Two of these terms follow from
da(e™C) = e(dsC — Cdn). For the remaining terms, note that on Q3 (gp),

d)f = —rgdarg=—rgds=—egugy' xdy,
where the last equality follows from Theorem Thus
df(e"B) =—e"gngy * (dn A B+dsB)
= e g8, (~dn.B - *d,B).

This accounts for the Q!(gp) component.

To verify the Q3 (gp) component of , first note that the terms involving F, follow from Theo-
rem Next, taking care with the slight modification of the conformal weight in Theorem
we get

[B.B]=(1@m*)(1-mm*)""*[B.B].

Finally, noting that [e"B, e~"C] = [B, C], this accounts for the Q3" (gp) component of .

Now we verify (5.3). The Q3" (gp) component is clear, but the Q!(gp) component requires some
computation. To first order in m,

duB = dy(1® m*)B+O(|Imf) = daB + dam*B + O(|m[).
Thus .
— % dAB = d;(B - ﬂ’l*B) + O(’m|2)

From (5.1)), we have
gn = go+ 24 (m) + O(Im["),

SO
gn8o (= + daB) =d;B - d;m*B+2u7 (m) gy d;B + O(|m|* + |m||vml).
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Finally,
~gmg ' dn.B = ~dn.B+ O(|m||dn])
=—-dn.B+ O(|m||dy|).
This accounts for all the terms appearing in the Q!(gp) component of (5.3). O]
Now consider now a perturbation (C+c, A+a, B+b) together with the first order metric perturbation.

(All second order terms in |77| + |m| are implicitly set to zero.)

VW(C+c¢,A+a,B+b,n,m) (5.4)

=VW(C+c¢,A+a,B+b,0,0)+
—(C+c)dy+2u~'(m)gy'dy,,(B+b) —dy.(B+b)—dj,,m (B+b)®-mFy,,

= VW(C+¢,A+a,B+b,0,0)+ (VW(C, A, B, 5j,m) - VW(C, A, B, 0,0)) +
—cdn+2ut(m)gy* (d3b—[a.B]-[a.b])-dn.b-d;m*b—[a.m*B] - [a.m"b]

®-m(dga+ifanal’).

We will focus on the case of an ASD instanton when the conformal structure is perturbed. That is,
weset C=0,B=0,17=0,d,a=0,d;b=0. This reduces to

2u ' (m)gy' [a.b]-d;m*b-[a.m*b]®-im[ana] .

The quadratic model for this situation becomes

(127 (m)gi") b - [a. ) - )
(o nal+316.61-m (s + 4anal ) b)

(5.5)
(5.6)

Q>

b

0
0

b

for all 4 and b in the cokernel. The important thing to note about these formulas is that (5.5) consists

purely of cross-terms between a and b, while (5.6)) contains no cross-terms.
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Chapter 6

An abelian solution on hyperbolic space

Fundamental to our understanding of the ASD equations are the model solutions on flat R*. In this
section, we construct a U(1) solution of finite energy on hyperbolic space. This solution is simply a
scalar-valued harmonic self-dual two-form.

Although this example lives on a non-compact manifold, it allows us to explicitly verify many of our
computations, and examine how the terms behave.

6.1 Geometry of hyperbolic space

Consider a family of hypersurfaces parameterized by ¢ such that the metric is of the form g = d2+¢(t),
and g(t) is the hypersurface metric. The normal curvature is N;; = —1(Ing)’ j- 1f we take an
orthonormal frame on a hypersurface and parallel transport it along the hypersurface normals, then
the connection matrices take the form

r() = O
0 Ni Nip Ng
r -Nj
b -Nj Fl”
—Ni3

The curvature components are determined in terms of the curvature of the hypersurface by

Rojoe = Nj¢ = NjmNime,
Rojke = Tjke = NjmDkes
Rijke = Ry = (NikNje = NieNjs).
As a sanity check, we can decompose flat Euclidean R* along concentric three-spheres. In this case,

we may take I';jx = —r L&, Nij = —r718;), Rl‘ljke = r72(0ik0je — 8:edj ), and verify that each curvature
component vanishes.
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Along S*, we parameterize a cylinder S* x [0, 7] with respect to the distance ¢. The radius of the S
at time ¢ is r = sin ¢. The volume of S? is 2772r3. Normal curvature is N;; = (-r~! cos t) = (- cot t)&;;.

Upon replacing these trig functions by hyperbolic functions, we get hyperbolic space H?*.

On H4, choose the orthonormal coframe

(e e, €%, e?) :=(1(tdt),

sinht 1

; —( —x'dx® + x°dx' - X dx? + x*dx?),
sinh ¢ 1

; —( —x2dx® + x*dx' + x%dx* - x'dx?),
sinht 1

—( dx® - xPdxt + xMdx* + xodx3)).

The volume form is

. 3
0123 _ (smh t) 0123
t

Although the {e} are singular at the origin, the self-dual two-forms €% + e(i*1)(i+2) agree with
dx% + dx(+1)(i+2) to second order.

6.2 The solution

We set ol . 23
B = % (6.1)
cosh®(t/2)

and show that B is harmonic with finite L? energy. It has a primitive given by
B-d sinh(4t) el .
2cosh™(t/2)

The norm of B over a ball of radius d is | B||* = 1672 tanh® (), since

BB=— 2>
cosh®(t/2)
2sinh’

B - Bdvoly: = Mdt A dvolgs
cosh®(t/2)
h3
/B-deolH4 e / s () (1) 4t~ 1672 tanh (¢/2).
cosh®(¢t/2)

We will now compute &,;,.

VB:( 23ech4( )tanh( )01,0,—sech4(E)tanh(f)03,sech4(£)tanh(£)02).
2 2 2 2 2 2
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The norm of VB is |VB|” = 6472 tanh® (£). Therefore,
1 t ¢ t t

€an =~ | VB|* + hl |B|? = 167 tanh* (—) (tanh2 (—) - 1) = —167*sech’ (—)tanh4 (—) :
4 12 2 2 2 2

For the topological energy;,

Bl = 6—23
cosh*(t/2)’
d Bl = sin}21(t)B|
po(N)B! = %%”B“
(d * +pp(N))B! = ~2 tanh(t/2)B!
__ tanh(#/2)
Bl (d « +po(N))B! - 2cosh8(t/2)
anh 3
Bl (d * +PD(N))B||(dVOIS3(r)) = _Zsoshs—((tt//z)) sinh (t)(dVOlS3)
1 _ ,tanh? (¢/2)
fop = 5 / Bl (d » +pp(N))B! (dvol(t)) = ~ 167 )

Pointwise we have
LA|B]® +|V4B[* = (B- ViV 4B).

By the Weitzenbock formula,
(B-V3VaB) = (B-((dyds+dsd,)B+pw(R)B—-[F4.B])).
For a solution,

$A[B[ + 1 |VAB[" + 5 |[B. B + &s B + 3 (B pw(W")B) = 0.

The radial Laplacian on H* is

(o O
)= (71 + ).

We verity for our example that

0=1% ((20 - 4cosh(t))sech10(t/2)) + 1 (12sech®(t/2) tanh®(t/2))+
+5(0) + &5 (-12)(2sech®(t/2)) + Lo0.

In the case W+ = 0, we get the simple differential inequality:
$AIB[ + 3|V BI* < ~&s B - 5 |[B. B
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Note the resemblance to the harmonic oscillator — f” = s f with f = |B|*. This should effectively cut
off high frequencies, leaving only wavelengths larger than ~ \/-s.

$A[B[*+ 3|V [BI < (dist(B,Z)* - R) B[
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Chapter 7

The Kahler case

7.1 'The Vafa-Witten equations on a Kédhler manifold
An oriented Riemannian four-manifold X is a Kdhler if it there exists w € Q>*(X;R) such that
Vw =0and || = 2.
Given an orthonormal coframe {e?, e!, €2, €3} for which w = €' + ¢23, we define
dz' == e’ +ie',  dzZ?i=e*+ie,
dz'=¢’—ie',  dz*:=e*-ie’,

so that
w=1Li(dz' AdZ' +dZ? A dZ?) = ™ + e,

Theorem 7.1.1. When X is Kdhler, the Vafa-Witten equations are
0° (iMFs+ 3 [y, y D +3 [BABT]=0
F' =4[y B1=0
03B —0ay* =0,

b

-

fory e Q%(X;9p ® C) and € Q*°(X;g9p ® C).

Note the U(1) symmetry given by 8 — €93, y — e=0y.

Theorem 7.1.2. If X is a closed Kdhler manifold, these equations are equivalent to

FA € Al’l, dAy =0,
éAﬁ =0, [y,y*]=0,
wniFs+1[BAB*]=0, [y.B+B*]=0.

In most interesting cases we have y = 0 so that only the equations in the left column are relevant. For
example, if A is an irreducible SU(2) connection, then kerd, = 0, so y = 0.
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Proof of Theorem[71.1. We define 8 and y so that if

B =Bi(e’ +e*) + By(e* + &) + B3 (e + e'?),

then
B:=1(B,—iBs)dz' A dzZ?
=3(By - iBs)((e”+ ") +i(e” +e'?))
B* =B =-L(B, +iB;)dz' A dZ?,
=—1(By+iBs)((e” +e®) —i(e® + e'?))
y:=C~—iBy,
y*=-C~iBy,
It follows that

B::Bla)‘i‘ﬁ_ﬁ*.
Now we write out components of part of the Vafa-Witten equations
~1[B.B]-[B,C] = ([Bs, Bs] +[C,B1]) (e + &*)+

+([Bs, B1] +[C, By]) (e* + &")+
+ ([B1, B2] + [C, Bs]) (% + e'?),

and match them to expressions in § and y:

3ily,y*]=[C.Bi],
3[B-B*]=[Bs,Bs] (e +€*),
31 [BAP] =By, Bs] e,
lonw=e"?
[y, 8] =3 (([C, Bo] + [Bs, Bi]) = i ([B1, Bo] + [C, Bs])) (e + &) +i(e” +e'2)),
[y, B]" =-[y". B"]

=3 (([C, B2] + [Bs, B1]) + i ([ By, B.] +[C, Bs])) (e + €°') —i(e® +e'?)),
[y, 81 = [y, B]" = ([C, B2] + [Bs, B1]) (e + €*') + ([B1, B2] + [C, Bs]) (e + €™2),
-3 [B.B] - [B,C]=3[B.B" ] +3i[y,y o+ [y, B - [y- B]"-
(diB +d,C)*° = 04LB, + 358+ 0C = 0% + idB, + 0C = 0*f — 9y*.

Thus the Vafa-Witten equations on a Kdhler manifold are equivalent to

30 (iAF + 5[y, y ]) +3[BAB*] =0,
F*-1[y.B] =0,
9B - day” = 0.
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Proof of Theorem[71.2]. We use a series of integrations by parts, assuming that X is closed.

1038 = 0ay"I” = 193817 + 1oay” I =2 [ {338+ 09")
= [8.817 + |3yl -2 [ (8- [E2°])
= 8481+ [oa] +2 [ (F2*-[1.B).

2|70 =3 [ B =2 [E3 + 410 BIP -2 [ (F2°- (7. 8)).

|2@? GAE + 3 [y, y D) + 2 [B A B
=JwniFs+3[BABTI7+ 11y v ]I +/X((iAFA,[%V])+%([%V*],[ﬂA/3*]))-

JGAE-Tyy D = [ GATERY]-p) @)
- /X (i(3404+0404)¢ - LO)
:/}(<i8A¢-52L¢)+A(iéA¢-82L¢)

= [0ay1” = |3y

[y ] [BAR]
==z (n BT
=2y BIAB D) =2y [BAly: B
=2 BIA B YD) + 24y, B 1 A [y, B7])
=310 87117 = 3 1y B1I-

Thus we get two identities when X is closed:

1938 = 04y" I + 2 [F3" — 1 [y, B] H = [y [ + 3 10y B1I + 348
30> GAEs+3 [y y ) + 318 B[ = = [aay” =3 112 B + 9y ]+

+loniFa+3[BABIN + 10y y 107+ 3 11y B

The left hand sides both vanish on solutions. The right hand side of the first equation is a sum of
positive terms, and so they must vanish individually. The same is true for the sum of both equations.
Thus all terms appearing here must vanish. O]
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7.2 Semistability

In this section, we prove an analogue of [Bra9l, Theorem 2.1.6] for the Vafa-Witten equations.

We extend the Hermitian conjugate * to forms so that (dz! A dz?)* = dz! A dZ2. That way,
(dz' AdZ*) A (dZ' AdZ?)* =dz' AdZ? AdZ' AdZ? = +4dvol = +20?.

Similarly, any 8 € Q>°(Hom(E, F)) satisfies / S A 8* > 0. In contrast, if N € Q'°(Hom(E, F)), then
JwAN*AN<O.

Definition 7.2.1. Let E be a vector bundle over a Kihler four-manifold X. Then the degree of E is

deg(E) = (cu(E) - [o], [X]) = [ S-Te(Ea) ne,

for any connection A on E.

Definition 7.2.2. We define the slope

HE) = riii((]?) '

Observe that Q>°(End(E)) = Q°Hom(E,E ® K)). For any 8 € Q*°(End(E)), we say that a
subbundle E’ c E is B-invariant if
B(E')cE'®K.

Definition 7.2.3. A holomorphic vector bundle E is -semistable if all f-invariant holomorphic
subbundles E’ c E satisfy u(E’) < u(E).

Theorem 7.2.4. Let A be a holomorphic connection on a Hermitian vector bundle E of rank R. Let F§
denote the traceless part of Fu. If f € Q*°(End(E)) is a solution to

wAiFy+1[BAB]=0, (7.2)

then E is $-semistable. Furthermore, if E' is a B-invariant holomorphic subbundle such that u(E'") <
u(E), then the orthogonal complement E* is holomorphic, and the restrictions of 3 to E' and E* both

satisfy (7.2).

Proof. We deduce the result by studying the restriction of this equation to a holomorphic subbundle
E'

Let E’ be a holomorphic subbundle of E, and let E* be its orthogonal complement. The connection

decomposes as
A" —-N*

with N € QU9(E* ® E’*). Curvature decomposes as

P F,-N*AN .
A= . F:t-NAN* |
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Note that iw A Tr(-N* AN) > 0.

IfB = ( /),ﬁn /Z,lf ), then the restriction of [ A $*] to E' is

[BAB*Y =B AB"1+PranBir—Boi A Bar.

Invariance of E’ by  means that f3;; = 0. Since the trace vanishes on commutators, it follows that if
E' is B-invariant, then Tr [B A f*] = Tr(B1 A B%,) > 0.

The restriction of to a B-invariant subbundle E’ is thus
wAi(Fy—=N*AN-Tr(F4)/R)+[B AB"]+ P1anPiy=0.
Integrating the trace, we get
2n(deg(E') — (r/R) deg(E)) + /x (iw ATr(-N*AN) + Tr(Bi2 A f7,)) = 0.
The integrand is nonnegative, so we get
U(E") < u(E),
with equality if and only if the integral is zero. The integrand is zero only when both N and f3;, both

vanish identically. The vanishing of N is equivalent to holomorphicity of E*, and if f3;, vanishes,
then f splitsas 8 = ' @ B*. [
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Chapter 8

Dimensional reduction

In this chapter, we compute the dimensional reduction of the Vafa-Witten equations to dimensions
three and two, following a procedure similar to that of Hitchin in [Hit87]. We discover that the
reduction to a closed Riemann surface is essentially Hitchin’s equations for Higgs pairs (A, ®@).

8.1 Hitchin’s equations and the reduction of Yang-Mills

Though motivated by dimensional reduction, Hitchin’s equations for Higgs pairs are distinct from
the dimensional reduction of the Yang-Mills equation. The dimensional reduction of Yang-Mills is
given by [Hit87] (1.2),

FA - %l [¢, ¢*] dVOlz =0, (81)
éA(p = 0,
for a principal bundle P — X, a connection A € Ap and ¢ € Q°(Z;9p ® C).

In contrast, Hitchin’s equations are [Hit87] (1.3),

Fy+[D,*] =0, (8.2)
éACD = O,

for ® € QY0(Z;gp ® C).
The equations are not that interesting, due to the the following fact:

Theorem 8.1.1. Any solution (A, ¢) to on a closed surface X also satisfies Fy = 0 and dy¢ = 0.
Proof. Any solution of must satisfy
- 2 . .
0=[0ap|” + |Fa-Li[¢,¢"] dvoly|?

= [oagl + 1A+ 1108, 9" + [ ([8:9°],iFw).
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Here we extend (e, ®) to be complex linear in the first component and conjugate linear in the second
component.

Now we work on the last term
J 181 iF0) = [ (90 [iFag)
~ [ {92i(3104 + 2101)¢)
- /Z (3(¢, i9ad) — (3ap A iDa®) + I (¢, idad) — (Duh, i049))
= [2a9 1~ [3a9]",

where to get the last line we assumed that X has no boundary, and used the identities

~dznidz = (dz-dz) dvol,
~dz nidz=—(dz-dz) dvoly.

Thus
2 %7112 2
0=|Faf"+5[¢> 811"+ |0a0]",
so F4 and 0,4¢ must also vanish, and also da¢ = (94 + éA)gb =0. ]

The reduction of the Vafa-Witten equations is like a combination of and (8.2). The connection
A over X splits into both ¢ € Q%(2; gp ® C) and a connection A* over X. Two of three components
of B combine into a Higgs field ® € Q10(X; gp ® C), while the remaining component of B combines
with C to form y € Q°(Z; gp ® C). The precise combinations are described in (8.8).

As was the case in Theorem [8.1.1} the raw reduced Vafa-Witten equations (8.7)) simplify consider-
ably after integration by parts, and the only interesting equations which survive are Hitchin’s

equations (8.2).

8.2 Reduction to three dimensions

Let Y be an oriented Riemannian three-manifold with a principal bundle P — Y. Let X denote R x Y’
with the product metric and R-coordinate x°. Over X, the Levi-Civita derivative V, reduces to the
Lie derivative £,. On the pullback of P to X, the Lie derivative £, extends to a partial connection,
which we also denote by £,. We think of £, as the “time derivative” We identify objects over Y with
their £y-invariant pullbacks to X.

Given a connection AY on P and a section A € Q°(Y;gp), we get a connection A on the pullback of
P over X given by
VAZdXO®(£0+A0)+vAY, (83)

and satisfies [ L, V4] = 0. Conversely, any connection satisfying [ Ly, V4] = 0 has this form.
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Now consider over X = R x Y the Vafa-Witten equations

2F} +1[B.B]+[B,C] =0, (8.4)
dZB + dAC =0,

together with the dimensional reduction equations
[£o,Va]=0, LoeB=0, L,C=0. (8.5)

Theorem 8.2.1. Any solution to (8.4) and (8.5) pulls back from a solution to the three-dimensional
Vafa-Witten equations is

Fur —*darAg—+[BAB]+[+B,C] =0,
dyrC+*dyB—[Ag, B] =0,
diyB-[AyC] =0,

where AY is a connection over Y, Ay, C € Q°(Y;gp), and B € Q!(Y;gp).

This theorem is a direct consequence of

Lemma 8.2.2. Let A be the connection defined by (8.3), and B := €. B. If Ay, B, and C are invariant
under Ly, then these fields are pulled back from Y and satisfy

2F; + 1[B.B] +[B,C] = (1 + ) (Fyr — ¥d,vAg— 2 [BA B] + [ YB,C]),
d;B+dsC=(dyC++"dyB—[Ag, B])—e® A (diyB-[A0, C]).

Proof. From the definition of the reduced V4 on Y, we compute

FA = dAdA = FAY - eo /\dAYA().

It follows that
2F; = (1+#%) (Far —dx® Adyv Ay)

= (1 + *X) (FAY — X (dxo N dAYA()))

= (]_ + *X) (FAY - *YdAYA()) .
For

B =Bi(e’ +e?) + By(e* + &) + B3 (e” + e'?),

we get )

B=¢".B=Be'+ Bye* + Bse’.
Then

«YB = Be® + Bye’! + Bsze'?,

and

B=(1++%)+YB,
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Note that
1[BAB] =[B,,Bs]e® + [Bs,Bi] e + [By, B] ™.

Recall that
~1[B.B] = [B;, B3] (e° + e**) + [Bs3, B;] (e + ') + [By, B,] (e® + ).
Thus
1[B.B]=-1(1++*)[BAB].
It follows that

2F; +1[B.B]+[B,C] = (1++%) (Far —+"darAg -1 [BAB]+ [+YB,C]).
Next we reduce the second equation.

d;B+d,C=—[A,e®.B] +diyB+e" A[Ay, Cl+dyrC
= (darC++"dyvB—[Ao,B]) - e A (diyB-[Ao,C]).

8.3 Reduction to two dimensions

Continuing further, we reduce to a Riemann surface X.

Theorem 8.3.1. On a closed Riemann surface %, the two-dimensional reduction of the Vafa-Witten
equations is equivalent to

0D =0, Fiz+[OAD*] =0, (8.6)
dar$p=0, [$,¢°]=0, [®,¢"]=0,
dary =0, [y,y"]=0, [D,y"]=0,
[¢.y"]=0, [y.¢]=0,
dpr¢— [©*,y*] =0,
E_)AZ)’_ [¢*, @*] =0,

where ® € QY0(Z;9p ® C), and ¢,y € Q°(Z;9p ® C).

Thus a solution (A%, @, ¢, y) corresponds to a Higgs pair (A%, @) plus some extra anti-holomorphic
fields ¢ and y satisfying various commutation relations.

We break the proof into three lemmas. We compute the reduced equations in Lemma Then we
rephrase the equations in the language of Kahler geometry in Lemma To get these equations
into the desired form, we assume that ¥ is closed and integrate by parts in Lemma|8.3.5]
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Lemma 8.3.2. Let AY be a connection over R x X with R-coordinate x! such that V ,v = dx' ® (L, +

Ay) + Vs, and B:=B- Byel. If Ay, Ay, C, By, and B are invariant under Lo, then these fields are
pulled back from X and satisfy

(dAzc —+%d,sB, - [AO,B] + [Al, *Zé]) +
+e% A (—d;zé +[A1, Bi] + [Ao, C]) +
+el A (+%d2 B - [A, Bi] + [41,C]) = djB + duC.

Lemma 8.3.3. Define

(/) = AO + iAl,
@ := L(1+i+%)B,
y:=C—iBj.

Then

2F; +%[B.B] +[B,C]
= (14 %) (Fax = i+ ([0, 871+ [,y ]) + [@ A @] - 26! Alm (0,429 - [@%,77])),
d;B+d,C = 2Re(éAzy - [gb*,d)*]) +Im((e® +ie') A x¥(20,: @ + i +* [y*, $*])).

Definition 8.3.4. To be consistent with the language of Kihler geometry on X, let w := dvoly denote
the Kahler form, L := wA, and A := L* which is equivalent to A : Q2(X) — Q%(X) by A := #%.

Lemma 8.3.5. On a closed Riemann surface Z, the equations

iN(Fpr + [OADT]) +5([¢,¢"] + [y, 7]

)=0, (8.7)
iN =@ -1 [y", ]
a
]

O — [D*, p*
aAZV—[‘P*’ ¥

b

0
0
0
0

b

are equivalent to

0,:D =0, Fur + [®AD*] =0,

0ar$=0, [¢,¢"]=0, [D,¢"]=0
dasy =0, [p,y"]=0, [D,y*]=0,



Proof of Lemma We compute

FAY = FAZ — el N dAZAl,
— Y dyrAg=— " (' A [Al,AO] +dasAo)

x> [

D>

0 A1)+ et AxZd s A,
—%[B/\B —%[é/\ ]—e /\[B1 ]
[+YB,C] = +*[B),C]-¢' A [+*B,C],
dyyC=e' A[A}, C]+dy:C,
*YdAYB:*Y( ! AdsBy + e /\[Al ]+dAzB)
- dAzB1+[A1,*EB]—e A +2d s B,
~[A0, B] = —¢" A[Ag, By] - [Ao,é] ,

dyB=dj (Bie' + B) =~ [A1, By] + d}. B

Thus
Fyr—+¥dy Ao~ 1 [BAB] + [+YB.C]
= Fae + > ([Ao, A ] + [B1, C]) - 3 [ BAB| +
+el/\( Sd A —dgA, - [B é]-[ﬁé, c])
and
dyrC++YduyB - [Ag, B]
= (dasC - +*deBy — [Ao, B] + [41, +*B]) +
el (+2dpeB - [Ag, Bi] + [41,C]),
and finally

4%, B - [Ag,C] = d%,B - [A1, By] - [Ap, C].

The original equations become

(1+*X)(FAZ+*Z([A0,A1]+[BI,C])—§ 3
tel A (*ZdAzAO —dg A, - [B1 é] - [*Zé, C])) =0,
(dAzC—*ZdAzBl - [AO,B] [A1 é])+
+e0 A (—d;zﬁ +[Ay, Bi] + [Ao, C]) +

[BAB]+

+el A (+¥daB - [Ag, Bi] +[A1,C]) = 0.
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Proof of Lemma We define

¢ = Ay +iAj, (8.8)
@ :=1(1+ix%)B,
y:=C—iBj.

Let * denote the Hermitian conjugate, and note that
dz:=e* +ie’,
D = %(Bz - iB3)dZ,
B = Re(®),
éAZ = %dé(VAZ,Z + iVAZﬁ),

5. 1(dg—i*x®dys) onQ%(Z;9p),
A dys on QY(Z; gp),

¢* = —(Ao - iA))
®* = —1(B, +iB;)dz = —-1(1 - +%i)B,
)/* = _(C+ lBl)

Next we compute
2(0a0¢ - [0%y"]) = (dar = i ¥ dus) (Ag + i41) - [ (1= #*1)B,C + By
- (dAzAO +x2d s Ay - [é, c] - [*Eé,Bl])
+i (dAzAl —xZds Ay - [é,Bl] + [*Zé, C])
= —i(1-ix¥) (+¥daeAg - dae Ay - [ By, B| - [+*B,C]).
Also,
20,®+i %X [p*, ¢ ] = dys(1+i%5)B+i = [C+iBy, Ag— iA]
=dpB-+* ([Bi, A] - [C A1]) + i > (A3 B+ [C, Ao] + [B1, 44]).
In particular,
Im((e® +ie') A x%(204:@ + i ¥ [y*, ¢*])) = €’ A (—d;zé +[AL, B,] + [Ao, C]) +
el A (+2dyB - [Ag, Bi] + [41,C]).
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Also,

2(0xy—[¢",@*]) = (daz =i ** dp2) (C~ iBy) - [AO AL (1= i*Z)é]
=d,;:C—+*d:B; - [Ao’é] + [Ab *zé] +
+i (—dAEBl —*7d,;:C + [AO’ *Eé] + [Al’é])

= (1= ix%) (dgsC - +*d s By - [0, B + [ A1, +*B]).
Finally,

2Fs — i+ ([¢,¢7]+[p,y]) +2[@ A ©7]
=2F;: +2+% ([Ag, Ar] + [B1, C]) - [BA B

The original equations become

2F; +%[B.B]+[B,C]
= (1++%) (Fas = 3i «* ([¢: "]+ [y, y"]) + [@ A ©*] - 2¢' AIm (92 ¢ — [

diB +d,C = ZRC(éAzy - [gb*,(l)*]) +Im((e® +ie') A x¥(20,: @ + i += [y*, ¢*])

A solution to the original equations is thus equivalent to

iA(Far + [@AQ*]) + 3 ([¢,07]+[>7"])
iAéAECD -3y ¢7]

7]

]

-

0ax¢ - [, y"

dary —[¢*, @
In the special case when X is flat, these equations take a particularly symmetric form
® := B, — iB; = 2®/dz, we get

b

0
0
0
0
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Proof of Lemmal[8.3.5 The norm of the first equation is
[Fae + [® A @17 + £ 116,711 + 51Dy y7 117 +
v [GALOAO T I8¢ )+ [GA[®A0 ] [yy D) 1 [ (96T Tny D+
o [ {inE (6.9 + [ (iAFw[yy]).

Twice the norm of the second equation is

23,0+ 411y 717 -2 [ (iAdp . [y, ¢7]).

The norms of the third and fourth equations are

|+ 110" 117 =2 [ (3., L0757,
3.y + 116, @117 =2 [ (@ue: [97.7]).
Adding together all these norms, we get
[Fae+ [0 A0 ]+ 51086707 + 4 1Dy ]I+
v [iA[0 @] (9.9 )+ [(AT0A® ]y )+t [ (166 ][y D)+
o [ (A [0, + [ (iAFg - [y ]) + 20,0 + [90] + [0,y +
3109 TP+ 197 @ T + 1[0y )1
2 [(iAd0. [0 N) + [ (Guetnfon 1)+ [ (Benlen. o)),

A solution to the reduced Vafa-Witten equations is equivalent to a zero of this expression. We will
now rewrite most of these terms.

First, we have the algebraic fact
([¢:¢71: Ly y 1) =11 y7 1 = [97.y711
Similarly,

(info o) [6.9D -2(| 7. 3| 10,67

~[[zo ] -2+
- I[@. 917 - [0, 9P

2
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By @1),
. * 3 2
JL A [6.9°D) = 04291 - [0
Finally, for this next equation, let Tr denote the operator characterized by Tr(AB*) = (A, B). Then

AdTe(i® [¢,y]) = iATr ((04:®) [¢,y] - P [0z y] - @ [, 9a27])

iATr ((04:@) [ 7]+ (9az9) [y, @] + (9a2y) [@, 9])

= AT ((3,00) [y, 61 + (9,:4) [0%7°) + (3.y) [9,0°T")
(1A (32:0) [y, 1) + ((Ba29) - [0%7"]) + ((aey) - [4°, 0°]),

where for the last line, we used the fact i dz A dZ = w (dz - dz) to convert from the wedge product to
the inner product. Hence

J (80,00, [y ¢°1) + [ (ug.l0 )+ [ (Bay g7, 07]) =0,
The sum of norms simplifies to

* a 2 1 * 1 *
|Fas + [@ A D ]* +2|00®] + 1[0 + 3 I[y> v ]I+
+ [, 117 + 1D,y 117 + 3 116 y* 117 + 94z §[” + [0z -

Since this sum of positive terms vanishes on a solution, each term must vanish individually. O]
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Chapter 9

Gluing

In order to investigate the dependence of the supposed Vafa-Witten invariants on the choice of
compactification, we initiate a study of the Uhlenbeck boundary of the Vafa-Witten moduli space.
This is a work-in-progress, with the goal of developing quadratic models in the spirit of [Tau84] and
[Don86|.

As we vary through a one-parameter family of metrics g;, the topology of the ASD moduli space
may change. If this change occurs away from the Uhlenbeck boundary, then it is described as the
neighborhood of a singular connection A in the ¢-parameterized moduli space. Such a singularity
can be modeled upon the zero set of a quadratic expression, provided that the expression is non-
degenerate.

When the change occurs on the Uhlenbeck boundary, the singularity can be described by gluing
techniques. These gluing techniques provide both a grafting map and an obstruction map. The
grafting parameters augment the tangent space parameters HY,, while the obstruction map augments
the obstruction H3. Upon adding an extra term ([Tau84, eq. (1.7)] or more generally [Don86, eq.
(5.3)]), the previous quadratic model extends to a description of the corresponding singularity as it
appears in the Uhlenbeck boundary of the higher-level moduli spaces.

Our (incomplete) goal is to extend these techniques from the parameterized ASD moduli space to
the parameterized Vafa-Witten moduli space. In Chapter 5} we already derived a quadratic model
which describes neighborhoods for the uncompactified moduli space, i.e. the region away from
the Uhlenbeck boundary. To make matters simpler, we will focus on describing the special case of a
neighborhood in the Vafa-Witten moduli space of an ASD connection, i.e. the region of My where
B is very small. In this case, the quadratic model reduces to and (5.6).

To extend this model to cover corresponding singularities on the Uhlenbeck boundary, it remains to
compute the extra terms which arise from gluing. After describing some standard constructions in
Section[9.1, we describe in Chapter 22 what we expect from the quadratic model at the Uhlenbeck
boundary.

We also comment that similar techniques might provide insight into the region of the moduli space
where B blows up. In particular, it would be interesting to explore what happens when we graft
instantons onto harmonic self-dual two-forms.
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9.1 Grafting instantons

The standard ASD instanton A, of width A over flat quaternionic space H = R* is given by the

connection matrix B
_ Im(xdx)

A
A2+ x|

satisfies the Coulomb gauge condition d*A) = 0, and has curvature
_ Adx adx
(12 +]xP)”

Ay

where
Im(xdx) = (—x"e® +x%e + x’e* —x?e)i+ (—x?e’ — x’e' + x%* + x'e?)j+
+(=xe® + x%e! — x'e? + x%%)k,
Im(dxx) = (-x"e® +x%' —x’e* + x?e’ )i+ (—xe’ + x’e' + x%* — x'e?)j+
+(=xe® — x%e! + x'e? + x%%)k,
Tdx ndx = (e +eP)i+ (e + eV)j+ (e” + ek,

cf. [FU90, p. 88] and [Tau84].

We define the gauge transformation u over H\ {0} by

x
u(x) = M € Sp(1).
Note the the identities
A = Im(dxx)
A2+ |x|2 ’
Cduul - - Im(dxx)
|x|”

The gauge transformation u acts on A,, which we write as u < A). We define

AMIm(dxx)

Ali=uxAy=uAjul—duut=—"— "2
! x> (A2 + |x[)

This satisfies d *A) =0, and

Fu =u < Fy =uF, U-I:A_ZWA(dxz).
)
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The pointwise norms of these connections A, and A’ are

_ V3 x| V/3)2

5 A
A%+ |x| x| (A2 + [x|*)

| A4

Notice how when x is small, A, is small while A, is large. Conversely when x is large, A’ decays as
|x|~* while A, decays only as |x| . Heuristically, for any connection matrix with localized curvature,
we should expect no steeper than inverse cubic decay, in accordance with the Green’s function of a
first-order operator in four dimensions.

Another important property of the standard instanton is that the orientation-preserving involution

x

X = ‘2

|x
acting by pullback on the domain exchanges
Al < Ay
For any rotation r € SO(H), we can find r—, r+ € Sp(1) (unique up to common sign) such that
r(x) =rxrt,

where we recall that r* = (r*)~! for r+ € Sp(1).

Now we examine the pullback of connections over H by such rotations r. Our particular gauge
transformation u intertwines rotations by the rule

r*(u<A) = (rurt) <r*(A),
for any connection A. In particular, A, and A’ transform as

r(Ay)) =rtAyrt = 1" < Ay,
r*(A) =r Ayr- =1 < A}

Given a principal Sp(1) bundle P — X equipped with a background connection A, we define a
grafting map as follows. Pick a point x, € X, an oriented frame of f € T,, X, and a point p € P, in the
fiber over xo. Next, consider a geodesic coordinate chart based at f, and the local trivialization 7, for
P induced by the radial gauge of A based at p. Upon removing the fiber of P at x and attaching a new
chart to 7, via the automorphism u, we get a new bundle P’ with ¢,(P’) = 1 + ¢,(P). Connections
on this new bundle are specified near x by a pair

(A°™, A™) satisfying A®" = u < A™.
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For sufficiently small Aoy, given any A € (0, Apax) and families of cutoff functions 9™ and Bi* with
0= B3"(0) = BY' (Amax)
1= im()tmaX) = B3 (0),
we define the grafted connection to be given in our geodesic coordinate chart by
(BA™ + B AL B (v < A7)+ BA),

and equal to the background connection A elsewhere.

Fixing the cutoff functions and the background connection, the choice of parameters is given by our
basepoint x, our oriented frame of T, X, and our frame p € P, and the parameter A. This is a total of
fourteen dimensions, parameterized locally by

R* x SO(4) x Sp(1) % (0, Aay)-

This parameter space reduces due to the symmetries of the instanton. Rewriting SO(4) = Sp(1)~ xz,
Sp(1)*, the symmetry subgroup of the standard instanton is Sp(1)~ x diag(Sp(1)*, Sp(1)). Account-
ing for this symmetry, the effective parameter space is eight-dimensional, given by

R* x SO(3) x (0, Amax)-
This copy of SO(3) is described invariantly by
Isom(A*" T X, (gp)x,)-
We define N — X to be the SO(3) x (0, Anax )-bundle
N :=Isom(A*" T*X, gp). x (0, Adnax)-

The total space of N is eight-dimensional, and it describes our grafting parameters.

If A is ASD, and if the cutoft functions f are chosen appropriately, then the grafted connections are
approximately ASD in the sense that small perturbations often make them exactly ASD.

9.2 'The gluing story

Suppose d := dim M sp, and that A € M,gp is an irreducible but singular point such that the
Kuranishi cohomology has dim H3 = 1 with H% = span(b). Note that since the index must be
preserved, dim H} =d + 1.

A model for the neighborhood of A € M 4gp, is given, as a subset of H}, by the zero set of a quadratic

“obstruction map”
q(a) =(4[ana]’-b), foraeHj,
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Figure 9-1: Cone model about a nondegenerate singular instanton, as the metric is perturbed.

and this is a singular cone.

By the metric transversality theorem for the SU(2) ASD equations, there exists some perturbation of
the conformal structure m € Hom(A%~, A>*) such that (mFg : b) # 0. Consider a family of metrics
g such that g, induces the perturbation m. Then the local model for the parameterized moduli space
is

((3[ana]" +tmEy)-b)=o0.

Assuming that the quadratic form given on H}, by (% [ana] - b) is nondegenerate, this describes a
standard surgery at A € M sqp.

If Masp = Magp,k has instanton number k, then the next highest moduli space M ssp x+1 has an
Uhlenbeck compactification
Masp k1 U (X x Maspk),

where for simplicity we assume that Msp x-1 = &. According to [Don86]], the end of this d + 8-
dimensional moduli space is described by a background connection A € Maspx and an eight-
dimensional pair of gluing parameters (x, %), with x € X and q> € RSO((sp(1)p)x, (A>*),). (We
can think of g as a quaternion, so that ¢ is in the orbifold H/(g* ~ (~g)?), which is a cone on RIP*.)

If the background connection A is obstructed by b € H2, then we get a quadratic model for the end.
Again we consider the t-parameterized moduli space, and the local model is

((3[anal’ +08.q%+tmFy)-b)=o0.

Here the notation J,g? simply means that we pair g* with b at the point x. (This is simply notation,
just to emphasize that the vector g2 dual to b is supported at the point x, like a delta function.) This
model allows us to explicitly model the change in topology near the end. For illustrative purposes,
we reduce the eight-dimensional picture to a two-dimensional one by considering X = S! and
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Figure 9-2: Cone model about a nondegenerate singular instanton, as the metric is perturbed.
A

(M g0): t=-1 t=0 t=1

-

g* = A? € R*%. Furthermore, consider the case d = 0 so H}, = span(a). Then as a function of x,
(8,72 B)

may change sign. This sign determines whether instantons appear over x when t is either positive or
negative. We get the following sort of picture describing the change in topology of M ssp +1:

This diagram illustrates a cup morphing into a pair-of-pants, where the nodes of (6x)l2 : b) are
indicated by the two dots.

Now consider passing from the ASD equations to the Vafa-Witten equations. Since the Vafa-Witten
equations are the ASD equations plus their adjoint, the Kuranishi cohomology of the Vafa-Witten
complex is given in terms of the ASD Kuranishi cohomology by

HEO’A,O) > Hfo,A)O) ~ H, ® HA.

The local model as determined in5.5|is essentially equivalent to

(4[ana]’ +4[b.b]-tmFz)-b) =0,
([a.b]-a) =0.

When the second equation is nondegenerate, it has the interpretation: “either a = 0 or b = 0 For the
b = 0 case, we recover the original M asp. For the a = 0 case, if dim H3 = 1, then we get b = \/E for
some constant £. Thus we see either the creation or destruction (depending on the sign of &) of a
pair of extra points in My, and these extra points carry the topology which was created/destroyed
in M ASD-
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Passing to My, k+1, We expect a similar obstruction arising from H %0, 4,0) 8iven by

b

((3[ana)™+4[b.b] - tmF; +ouq?) -b) -
([a.b]-d) -

However, unlike the ASD equations, the standard instanton I is Vafa-Witten-obstructed by HZ, , . =

(0,1,0) =
H}, which is eight-dimensional. (Eight dimensions rather than five since when we glue, we must
choose a “trivialization at infinity” which gives an extra SO(3).) Thus we expect an extra eight
constraints of the form

(8, [b.1]-a) =0

for 1 € H}. In the generic case, the solutions with b # 0 should consist of a discrete set of points. These
extra points should say something very interesting about whether or not a chosen compactification
leads to a well-defined invariant.
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Appendix A

Notation and conventions

The goal of this appendix is to establish consistent conventions to facilitate precise computations.

A.l Linear algebra

A1l Components of linear maps

Here we describe some details of our index notation. We use the Einstein summation convention,
keeping track of the left-to-right order of indices.

Let V be a real vector space with basis {e;};_, and corresponding dual basis {e’}_ . A vectorv e V
has components v = e;v?, and a covector « € V* has components « = e’a;. There is a natural
symmetric duality pairing between V and V* given by

a-v=v-a=va'.

Let W be another vector space with basis { fj}:n: , and dual basis { f7 };":1 Any L € Hom(V, W) has
components L(e;) = f;L/; so that

w=Lv < fiw =fil/y! < w/=Lw"

Similarly, the dual map L* € Hom(W*, V*) has components L*(f?) = e/L*;'. It follows that
L*ji = Lij, and
a=L"B < e'a;= eiL*ijﬁj — ;= Ljiﬁj-

If V comes equipped with a Euclidean metric g = g;;, then we may view g either as a nondegenerate
symmetric bilinear form g € Sym?*(V*), or asa map g € Hom(V, V*). We take the latter view, which
is more convenient for our purposes. The “symmetry” condition on ¢ means that g* = g.

We denote the components of the inverse by g~! = g'/ so that gikg;; = 8} In components, we have
the lowering and raising operators

gv)=e'gp),  g'(a)=eiga;.
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We implicitly use the metric to extend the duality pairing

vewi=g(v)-w=v-g(w) forv,weV,
a-Bimg(a) Boa-g'(B) forafeV”.

In components, we implicitly use the metric to raise and lower indices. For example, if v € V, then
V= g,‘jVj.

This convention does not apply to the basis vectors themselves, since e; # g;je/ unless {e;} is
orthonormal.

While the metric allows us to raise and lower indices at will, it is essential to keep track of the
left-to-right order of tensor indices, since L;; # Lj; unless L is symmetric.

A.1.2 Representations on the dual space

This subsection explains the reasoning behind the convention described in Remark

The dual left representation GL(V') on V* is given by

GL(V) — GL(V*),
L~ (L*)™. (A1)

The corresponding Lie algebra representation is

gl(V) — gl(V"),
L -L". (A.2)

If V comes equipped with a Euclidean metric g, then for any L € End(V'), we define the metric
adjoint LT € End(V'), which is characterized by

Lv-w=v-LTw,
and given explicitly by
LT — g—le-g.

Remark A.1.1. By widespread abuse of notation, L7 is typically denoted by L* in conflict with the
notation for the dual map. For example, the standard notation for the metric adjoint of the exterior
derivative d (over a closed manifold) is d* rather than d”. To increase readability, we abandon the
notation LT outside of this subsection.

In the case where V comes equipped with a Euclidean metric, we have an alternative to the represen-
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tations (A.1) and (A.2), given by the metric adjoint representation

End(V) — End(V™),
L (L") =gLg™. (A.3)
This is a representation of associative algebras. It agrees with (A.1) and (A.2)) respectively when
restricted to orthogonal and antisymmetric endomorphisms
O(V) ={LeEnd(V)|LT =L},
o(V)={LeEnd(V)|L" =-L}.
Remark A.1.2. The representations (A.2) and (A.3)) disagree in general. For symmetric endomor-
phisms, they differ by a sign. Since all vector spaces of interest will have metrics, we abandon (A.2)
and rely entirely on the metric adjoint representation (A.3)), and incorporate it into our notation. For

L eEnd(V) and a € V*, we define
La:=(L")Ta. (A.4)

In components, we write this in the following possible ways:

(L(X)i = giijkgkg(Xg = LijOCj = L,‘j(Xj.

A.1.3 The exterior algebra

We view A*V* as the free graded-commutative R-algebra with identity, generated in degree one by
V*. If « € APV*, then we write the components of « in the following ways:

1 1 1
a=—ap.e" A Al = ;a;l_..lpell'"IP =—are' = > agel. (A.5)

Pl | pl

. . . I increasing

If « is homogeneous, we let || denote the degree of «, and |I| the length of the multiindex I.

The duality pairing on V* ® V extends to A*V* ® A*V by the rule

boe [ E=1,
0 otherwise,

where ¢ denotes the antisymmetric tensor which gives the relative sign of two permutations.

We define metric raising and lowering operators on a basis by

g(er) :=gler) A ngler,),
gl =gl (") A ngi(e™).

The duality pairing on A*V* ® A*V extends to metric pairings on A*V* ® A*V*and A°V ® A*V
given by

a-p=a-g'(B), v-w=gv)-w.
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A.1.4 The fermionic oscillator algebra

For a finite-dimensional vector space V, the fermionic oscillator algebra @*( V') conveniently de-
scribes endomorphisms of A*V*. Unlike the Clifford algebra[A.1.5} the fermionic oscillator algebra
does not involve a metric. The oscillator algebra ®*(V') is a Z-graded R-algebra generated by the
image of two linear maps 1 : V < @7 !(V) and e : V* - ©!(V) and characterized by the relations

Vv,weV, Ya,Be V",
t(V)e(w) +1(w)i(v) =0,
e(@)e(B) + e(B)e() =0,
e(a)i(v) +i1(v)e(a) =a-v.

If V has basis {e; } and dual basis {e’}, then we use the abbreviations

i=a(er), b= e,

e =e(e), € =elelk,

There is an action ®*(V) - End(A®(V*)) generated by the standard contraction and wedge maps

I;-

e el Tk s ol A el Ik (A.6)

k
el s Z(—I)J‘1 (eIJ' . ei) el Tion A elivi Ik
Jj=1

Note that e(«) acts as a multiplication, while ¢(v) acts as a graded derivation. Specifically, that e(v)
acts a graded derivation means that for any «, f € A* V¥,

e(v)(anp)=(e(v)a)np+ (—1)“"|¢xA (e(v)p). (A7)

The normal-ordered monomials are monomials in ®*(V') of the form €!; for increasing multi-
indices I and J. The normal-ordered monomials provide a vector space basis for ®*(V'). Note that

dim ©%(V) :( k2+d(1111anV ), nd

dim®*(V) = ) dim®*(V) =44V = dimEnd(A*(V")).
k=-n

The normal ordered monomials in @°( V') are easily seen to act linearly independently on A®(V*).
Therefore, the action map ©*(V) - End(A*(V*)) is injective. Since the dimensions coincide, this
action map must be an isomorphism.

There are two important duality relations for ®*( V). First, recall that the dual space End(A*(V*))*
is canonically isomorphic to End(A*(V')). There is a natural dual action

©°*(V) - End(A*(V))
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for which ((v) acts on a multivector as wedge, and e(«) acts on a multivector as contraction. These
two representations are adjoint in the sense that forv e A*(V),we V,a e A*(V*), e V*,

((w)a-v=a-1(w)v and e(B)a-v=a-e(f)v. (A.8)
In contrast, ((v) is metric-adjoint to €(g(v)) in the sense that forv e V, a, f € A*(V*),

t(v)a-f=a-e(g(v))B.

We now assume that V' comes equipped with a metric so that there is a metric adjoint action of
End(V) on V* (A.4). We extend

this action to a derivation on all of A*V*. It’s easy to check that the embedding
End(V) < Der(A*V*) c ®*(V)
is given by

Definition A.L.3. For a Riemannian vector space V, the standard action of a rank two tensor L = L;;
acting on « € A*V* as a derivation is given by

La:= Lijeitjoc. (A.9)

A.15 'The Clifford algebra

If V has a metric g, then the Clifford algebra C1°(V, g) is the Z,-graded associative algebra generated
by y: V < CI'(V, g) subject to the relation

y(my(w) +y(w)y(v) +2v-w=0.

There is a homomorphism CI*(V) - ®°*(V') generated by

y(v) = e(g(v)) = 1(v). (A.10)

A.1.6 The.producton A*V*

When V' comes equipped with a metric g, we define the following product on A*V*.
Definition A.1.4. For any a € Al®lV* and 8 € AlFIV*,
a.f= (- (ag;a) A (a;B) € A2y (A1)

where a;a was defined by (A.6). The (—1)/*-! factor yields the desired rule (A.12).

Next, we fix an identification between antisymmetric transformations L € o(V') and A2V*.
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Definition A.1.5. The isomorphism 0 : 0(V) — A2V * identifies L € o(V') with the element of A2V'*
having the same components. Specifically, by (A.5) we have 6(X) := 3 X;;e'/.

For example, if n = 2 and L is given by the matrix

Ly Lo\ _[ 0 1

Proposition A.1.6. If g is positive-definite, and if {e'} is an orthonormal coframe, then for all X, Y €
o(V),and all «, B,y € A*V* of homogeneous degree, the following identities hold:

then (L) = e'2.

el P gpro(pitpa=1) _ pl(p1i=1) \ o(p1#+1)-(pr+pa-1) (A.12)
0([XY]) = 6(X).6(Y). (A.13)

—%tr(XY) ~ 0(X)-6(Y). (A.14)
B.a=(-1)lBl1g g, (A.15)

(D)l (B.y) +c.p.=0=(-1)I"(a.B).y +cp, (A.16)

where c.p. denotes cyclic permutations of «, f3, y.

Iflal = |B| = Iy| = 2, then
a-(B.y)=(a.p)-y. (A17)

Note that (A.15) and (A.16) together state that. is a graded Lie bracket.

Proof. Equation (A.12) follows from (A.11) since (~1)?171a, (e!P1) = el (P1=1),
For (A.13)), we compute

0([X,Y]) = % (XY - YijXji) e = X Yje'™ = iX,-ijg(e"f.e“) = 0(X).0(Y).
To verify (A.14),
1 1 1 y
—Etr(XY) = =5 XY = inij,(e'J cef)y = 0(X)-0(Y).
For (A.15)),

B.a= (_1)|ﬁ\—1(aiﬁ)(ai‘x) _ (_1)\“\\ﬁ|+\“| (a;a)(a;p) = (_1)|¢%||ﬁ|+1 a.pB.
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For (A.16), we compute

(—1)“"”Y|a. (B.y) +c.p.

= (-1)! DA (a,0)a;((a;B) (ajy)) + c.p. by
= (~1) PO (a,0) ((aiB) (ajp) + (-1 (@;B) (aijp) ) + c.p. by

= (—1)“"|(|y‘“)+‘ﬁ|((a,-oc)(aijﬁ) (a;y)+

b (1) D12 (03 () (a,a)) + c.p.

= (1) 1D P @) (a) (ay) + (-1 TV (a8 (aijy) (asa) +cp.
= (=) P00 @) (ajiy) (i) = (-1 (a8 (azy) (as00) +cop.

=0.

To verify (A.17) for «, 3,y € A>2V*, we compute

& (B-7) =5t (07 (@) [67 (£ ()]) = 5 tr ([0 ()0 (B)] 67 (1) = (- ) .

A.l.7 Productsong® A*V*

Let G be a Lie group with corresponding Lie algebra g. Suppose further that g is equipped with an
invariant metric. Since infix notation (e.g. A, -,.) will be reserved for operations on forms, we will
use outfix products for g. We denote the Lie bracket by [ ] : g ® g — g, and the invariant metric by

():g®@g—>R.

Of primary interest is the case g ~ sp(1) = su(2) = s0(3). We fix Lie algebra isomorphisms

00 0
"”((1)_01)” 00 -2
02 0

. 0 0 2

j (?(’))H 0 00
2.0 0

. 0 -2 0
k»(_o’?)H 2 0 0
\o 0 0

We use the metrics

(x&) = Re(x¢) forsp(1),
(x§) =—3Tr(x§) foru(2),
(x§) =—§Tr(x§) for so(3).
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Fixing a normalization on any one of these Lie algebras, the other normalizations are determined by
the constraint that the Lie algebra isomorphisms are isometries.

Invariance of the metric means that

([6x]Q) = (SxC]) forall , &, Ceg. (A.19)

Our products on g ® A*V* will be determined by specifying both an outfix product on g, and an
infix product on A*V*.

Proposition A.1.7. Forall a, 3,y € g ® A*V* of homogeneous degree, and X € g = g ® A°V*, the
following identities hold:

(8] = a.f+ (~1)IFB. a c U(g) ® AlB2 Y, (A.20)
[B-a]=(-1)"IFa.p]. (A.21)
0= (-1 ([a.B].y) +cp. (A.22)
(a-[BX]) = ([« B] X) (A.23)

If|af = B[ = y| = 2, then
0=[[e.B] y]+cp. (A.24)
([ B]-y)=([B-y] «) (A.25)

Proof. By multilinearity, it suffices to prove the above identities for decomposable «, 3,y. Write
o =a; ® ay, with a; € gand a; € A*V*, and similarly for § and y.

For (A.20)), we have the identity [a; 81 ] = a1 81 — 1 in the universal enveloping algebra /(g), so

[(X.ﬂ] = [(xlﬂl] ® oy .ﬁz = alﬁl ® .ﬂz + (—1)'““‘3%10(1 ® ﬂz 0 = (X.ﬂ + (—1)‘06”/3|ﬁ. .
Equation (A.21) is a direct consequence of (A.20).
For (A.22)) we compute

(D) ([a. Bl.y) +c.p.

=(-1)"M ([ 1] y1) ® (@2. ) - y2 + c.p.

=([a1fi]y1) ® ((‘U'“”y'(“z-ﬁz)-)/z+C-P-) bY’

=0 by (A.16).
For we compute

(a-[BX]) = (o1 [frX]) ®@ a2 B = ([a1 1] X) ® a2 - B2 = ([~ B] X).
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For (A.24)) we compute

[[a.B]-y]+cp.
=[[a1fi] 1] ® (@2.B2) - y2 + c.p.
=([[apr]y1] +c.p.) ® (2. B2) - 2 by (A.17),

=0.
For (A.25]), we combine (A.17) and (A.19) to get

([a.B]-y) = ([a1Bi]y1) ® (a2 f2) - y2 = {[Biyr1] 1) ® (B2-y2) a2 = ([B.y] ).

A.2 Geometry in alocal frame

A.2.1 Lie and exterior derivatives

Let X be a n-manifold with boundary, equipped with a frame {e;}_, and corresponding dual coframe

{e?}. (If our manifold of interest has no global frame, then we restrict locally to a n-submanifold
which does.)

Corresponding to the vector fields {e; }, we get Lie derivatives { £; } which act on functions f € Q°(X).
Since we allow for non-coordinate general frames, the functions £, £, f and £,£, f can differ.)

Suppose for the moment that X has a coordinate frame {e, } arising from coordinates x*. Then there
is some change of frame G € GL(T X) expressing our frame {e;} in terms of the coordinate frame
{eqs} by e; = G*;e,. Thus

0

l' .
ox®

E,’ = Ga
We define functions
Cikj = (Gil)k,x([,,'Gaj - ﬁjGai)
which are independent of the choice of coordinate frame, and for all f € Q°(X) satisfy

0=ci"jcm e — Licj*e
LiLif - LiLif = Cikjﬁkf) Cikj = _Cjki) + ijekai - EjCeki
+ Cgm,'kaj - EgC,'kj.
In the general case when there is no coordinate frame for X, there are still functions ¢;¥; associated
with our frame, which satisfy these relations.
Let Q*(X) denote the space of smooth sections of A®(T*X). It comes equipped with a natural action

of the oscillator algebra ®*(TX). Given a form w = w;e!, we define the function-only Lie derivatives
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by
L(w) = (Liwp)e’.

These derivatives define operators £ on Q°*(T*X). Thus we have an operator algebra generated by
{li, €, Q?} in degrees (-1, 1,0), and functions {ci" j} obeying the following graded-commutation
relations:

e =0 [s] [e] =) [£0f]=Cfs [£L] = ctich [£0] =0 [£hel]

Given a local frame, If G is a change of frame, then G naturally acts as an automorphism of this
operator algebra:

G(1i) =G s, G(e")=(GN)ve",  G(LY) =G (LY + (G (LyGY})G(ar)),

G(C)ikj — Gi’i(G_l)klejfj (Ci’k,j/ " (G_l)j”j/(ﬁi'Gk,jﬂ) _ (G_l)i”i'([,ijk,iu)) ,
so the operators {G(l,'), G(e'), G(Q?)} and functions {G(c)ik j} satisfy the same relations.

We define the Lie derivatives and the exterior derivative respectively as
éi::ég—cikjeftk, d: —e£ +—c, ]e’ftk.

They satisfy

[épf] = ﬁif> [éiaéj] = Cikjék + (ﬁkciej)eklfa [ép lj] = Cikjlk) [§i>€k] = —Cikj€j,

[d.d] = 242 =0, [d.L;]=0, [d, 1] =L, [d> ek] Czkjelj G(d) =d.

Again, if G is a change of frame, then {G(ti), G(e'),G(L)), G(L,). d, G(c),-kj} satisfy the same

relations. Note how the {£;} can be reconstructed from d via [d, ;] = L;.

A.2.2 The Levi-Civita connection

Given a manifold with metric tensor g = { gi j}, we define the Christoftel symbols

1 ! s 1
k . kK’ k
L% 58 (Liguj+ Ligri— Ligij+ i’ j8iw + cx igyy + ¢i* jguonr)

or equivalently

Ligj i = (ﬁigkj + Ejgki - Ekgij + Ckij + Ciji + Cikj) .

N | =

They satisty

L L, (A.26)
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Lirs + Ligr = »Cigrs’
rirs + risr — _£ig1‘5) (A.27)

and transform as

G(r)ikj _ Gi’i(G_l)kk,Gj/j (Fi’k,j' + (G_l)j”jrﬁile’ju) )
= GGG (T = G Lo (GTHY).

Define the Levi-Civita derivative VT of a tensor such as T = {Ti jke} to be

!

. . . . o . : / .
(V)i ffe = LpT ke + Ty TV Ko = T T R + TS TN o = T o T,

where T}, acts on upper indices vi as I},?;v, and on lower indices «; as —I},";a;/. These respective
actions of T}, are the standard representation of g[( TX) on I'(TX), and the dual representation (A.2)
of gi(TX) on I(T*X).

The metric compatibility relations (A.27) are equivalent to the statement that raising/lowering
commute with the operation of taking a covariant derivative.

On differential forms, the covariant derivative is defined by
Viw:= L) w) - T e o,
and the corresponding operator satisfies

[Zi’ ‘J'] - lkrikj’ [Zi’ej] = T/, [Zi’ej] - ekrikf’ [Zi’ ‘k] - _‘jrikj’

d=¢'y, d"=-1,9, [7,,9,] = e*19, + Rijeec® e,
where R is the curvature tensor, yet to be defined in (A.28).

The covariant derivative of a multivector v is given by Vv := (L?+T;*;1,e/)v. The covariant derivative
then satisfies the compatibility relations

Li(a-v)=(Via) - v+a-V;v,
Li(a-p)=(Via)-p+a-Vp,
Li(v-w)=(Vv) -w+v-Vw.

We define the Riemann curvature tensor R;;*, by

Rif*p:=LiTf% = LiTi* e + T5 0™ = TF L™ — ¢ T (A.28)
Note that for each i, j, R;;*s € o( TM). Furthermore, R satisfies

Rijke = —Rjike = —Rijex = Ryeijs Rijke + Rjkie + Rgije = 0. (A.29)
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On a sphere with a standard metric,
Rijij >0fori#+ ]
The second Bianchi identity is

(VR)nij*e + (VR)ijn*e + (VR) jui*e = 0.

If g is positive-definite and X comes equipped with an orientation, then define | /g := +/det g, with
the sign depending on the orientation of the frame so that the volume form

dvoly = \/ge"™"

is positive. It transforms as G(dvolx) = dvolx.

We define the divergence of a vector field v by
div(v) :=e' - Vv =L/ +T/v' € Q°(X),

which satisfies
div(ei) = r]J, = ,C,-ln\/§+ iji-

The Lie derivative of dvoly is
L; dvolx = div(e;) dvoly.

A.2.3 Integration by parts

For oriented X, the volume form allows us to define the Hodge star and integration of functions,
leading to integration by parts.

The Hodge star « is characterized by the relation a A xf8 = (- §) dvoly,. It satisfies the properties

«2 = (—l)k("’k), Ei*(—l)k“ _— li*(—l)k - %€,
d* = wd (1), oL = (t(L) - L), e =l

where n = dim X, k is the operator which gives the degree of a form, € and 1 are wedge and contraction
operators of [A.1.4 L € End(TX) acts as (A.9)), and ¢ is the antisymmetric tensor which gives the
relative sign of two permutations.
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Integration of a function is given by
f fo= / £ dvoly,
b' b
7=/ [ fvolu,
M

1/p
HfHLIk’ = (/ Z \viflP dVOlM) .

o<|I|<k

The pointwise metric pairing on forms extends to the global metric pairing [, « - 8. If « and f3 are
vector bundle-valued differential forms, and the bundle has metric (), then the pairing is [, (« - ).

Given a differential operator D, the formal metric adjoint D* is the differential operator such that for

compactly supported « and S,
J \pa-p)= [ {«-D"B).
b b'e

As noted in Remark|[A.1.1, we use the notation D* for the metric adjoint although it conflicts with
the notation for the dual map.

We use the outward normal first convention to induce an orientation on 90X so that [, 8 = [, df for
B € Q"1(X). This gives us an identity for a boundary integral:

/aXft,-dVOIX:/Xd(t,-fdvolx):f){ﬁi(fdvolx):L(ﬁ,-f+fdiv(e,-)) dvoly.  (A.30)

Note that £;(«a - ) = (Via) - B+ a - (V;f3). Substituting f = « - 8 into (A.30), we get our integration
by parts formula

/X(Vioc)-ﬁdvolX:/ (a-B) lidvolX+/Mcx-(Vfﬁ) dvoly,

axX
where the formal metric adjoint of V is
Vi=—(V;+div(e;)). (A.31)
We extend the adjoint of V; to bundle coeflicients in (A.36).

For the Weitzenbock formula, we will need the covariant Laplacian denoted V*V, where V is given
byel® Ve T*M ® Q°*(M). We compute

f(v(x'vﬁ)
b
= N AvE
/X<Vloc g7V;p)
=f a-(g"v;p) 1,~dvolx+f (a-V*VB), (A.32)
ax b
where V*V = V;* gV ;.
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A.3  Principal bundles

A.3.1 Fiber bundles, Cech cochains, and associated bundles

In this section, we introduce the formalism of non-abelian Cech cohomology. This is not meant to
be a rigorous treatment, but rather a roadmap of some general principles (and principals).

Let 7 : E - X be a fiber bundle with fiber F, and structure group G c Diff(F,). Given an open
cover {U,} of X, and a collection of smooth local trivializations ® = {¢, : U, x Fy — E}, we obtain
a cocycle

TaﬁanﬂU/;—>G,
Top = G Dp-

The cocycle condition is 7,87y = Tay.

Given any cocycle 7 and a representation p : G — Diff (F), we construct the associated bundle, which

we denote
[y Ua xF

[x6, f5] ~ [xar fo]

(We have not yet defined the principal bundle P;, so for the moment this is only notation.) Implicit
in 7 are the canonical trivializations

P, x, F:= , where fo = p(74p) f3 for all a, S

Uy x F— 7%, F,
(Xa> fa) = [xa> fa].-
Furthermore, cocycle associated to P; x, F with the canonical trivializations is p(7).

We now consider some special cases. In the case F = F, and p = py is the original representation of
G on F, then the original trivializations ® = {¢, } glue to give an isomorphism

®: P, x,, Fp — E.

The moral of this example is that a fiber bundle E is determined by its associated cochain 7 via
the construction P; x,, Fy, and a canonical isomorphism E = P; x,, F, is determined by the local
trivializations ®.

In the case F = G and p = my is left-multiplication on the fiber G, we get the principal bundle
P, =P, xp, G.

Since m; is a faithful representation, the Cech cocycle of P, is 7 itself. A local sectiony : U — P,
represented over Upg by [[xﬁ, I/Jﬁﬂ corresponds to a local trivialization of 7 x,, F for any F and p. This
local trivialization is given over U, n Uy by

p(y): (UanUp) x F —> Pr x, F
(x/bf) = [[x/S’P(I/’ﬁ)fﬂ ~ Hxa’P(Taﬁ)P(Wﬁ)fﬂ = [Xa> Y f].
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The moral of this example is that the principal bundle P, encodes the cocycle 7.

Note that P, has a natural right G-action given by [x,, 4] g := [ x4, ¥4g]. For a general principal

bundle P, we define
PxF

[[xe yal, £~ [[xe: val 7% p(8) f]
For P = P,, the resulting space is equivalent to the old P, x, F via the diffeomorphism [ [ x4, ¥ ], f] =
[xa> p(¥a) f1.

Now consider the case F = G and p = Ad is the adjoint representation. Then a sectiong : X - P, xqG
corresponds to an automorphism p(g) of P; x, F for any F and p. This automorphism is given over
Ua n Uﬂ bY

Ppr:=

P(g):PTXpFHPrXpF
[xss f3] = [6: () f5] ~ [%as p(Taps) (Topfa) | = [as () fa] -

This situation can be summarized nicely with the language of non-abelian Cech cohomology. Recall
that in abelian cohomology, we have an exact sequence

0-2°-C'>Z'-5> H' > 0.

for a cochain complex (C*, §) with cocycles Z* and cohomology H*. This sequence extends to the
non-abelian context in the following way:

trivialization ®={¢q },
¢¢x:Ua—’P;

gq):{(Prxg;l }
——
Co(P)
8: 0 {1a5=07" 05}
0 Z0(P x4 G) &0(G) 71(G) H(G) 0.
—_— —_—— —_—— —_——
bundle automorphisms g={gq }, change of gluing data isomorphism
Ga=TapBpT, é triviflization TapTpy=Tay classes (based at [ P])
g={ga}

gT={garuﬂg§‘}

We now explain the notation. The base space X and open cover {U; } are implicit throughout. For
simiplicitly, we ignore issues of refinements of open covers. Instead of abelian groups, there are
set-valued functors C9, Z9, Z! and H!. Straight arrows denote maps of sets, while the squiggly
arrows emanating from C°(G) denote a group action. The cohomology coefficient G denotes some
subsheaf G c C*°(X;G). For example, if X is a complex manifold, then G might denote the sheaf
of holomorphic maps from X to GL(C"). In this case, a principal G-bundle will determine a
holomorphic vector bundle of rank #.

For a fiber bundle E with fiber F, the notation C°(E) denotes the set of maps [[, U, — F, while Z°(E)
denotes the subset of such maps {s, } which satisfy the cocycle condition s, = p(74p)sg. Thus Z° = H°
corresponds to global sections. The set Z1(G) denotes the set of G-maps 7 : HopUunUp > G
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which satisfy the cocycle condition 7,475, 7,) = 1. The set H'(G) consists of the C°(G)-orbits in
Z'(G) under the action

gT = {gthoc[ig[_;l} . (A.33)

“Exactness” from right to left, amounts to the following facts:

o Every isomorphism class of principal G-bundle admits some gluing data 7.

o P, isisomorphic to P if and only if it arises from some trivialization ® of P.

o Two trivializations ®; and @, determine the same 7 if and only if they differ by a bundle
automorphism.

This formalism is capable of reducing some otherwise complicated theorems to simple diagram
chasing. For example, suppose we have a central extension of our structure group0 - Z - G -
G — 0. Then we get an “exact sequence”

HY(Z) - H'(G) -~ H(G) - H*(Z),

where the sets on each end are traditional abelian cohomology groups since Z is abelian. For example,
we have the standard theorem

Theorem A.3.1. A real oriented vector bundle V admits a Spin®-structure if and only ifw,(V') € H*(Z,)
admits an integral lift.

Proof. Tt suffices to show that W; € H3(Z) is the obstruction to lifting an SO-structure, and that W3 =
0 if and only if w, € H?(Z) mod 2. The proof follows from chasing the following diagrams, where
colinear arrows are exact, and the dotted arrows indicate boundary maps induced on cohomology.
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Z 00— > 7 ; Spin + SC >0
R 0
emie (_1). id
00— >U(1) > Spin® >S >0

\dJ (o)
0— SU(1) —4 s u(1) .0
0 \‘ 0
0 0
i(z)

%d 2

HY(Z,) — H'(Spin) —— H(SO) —2— H2(Z,) ,

(-1)° id -1 H(Z)
H'(U(1)) — H(Spin) —— H(S0) — > FX(U(1)) |1

H2(Z) H3(Z)

Another application of this formalism is to understand reductions of the structure sheaf.

Suppose we have an exact sequence 0 >~ H - G - G/H — 0, where H need not be normal. We get
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the following “exact sequence” sequence in Cech cohomology:

FO(P xaq G) ~~= HO(P x,,, G/H) —= H'(H) — H(G). (A.34)
| S — ~ — —
bundle automorphisms reductions isomorphism isomorphism
classes of classes of
H-bundles G-bundles

based at [ P]

Definition A.3.2. A reduction to a subsheaf H c G is a section R € Z°(P x,,, G/H), where the
representation my, is the action induced by left multiplication.

If P = P, for some 7 € Z'(G), and if R is a reduction, then R is represented by some R = {R } C'(G)
which obeys the compatibility condition R, = TasRp7} s for some 7 € C'(H). This compatibility

condition is equivalent to 7,4 = RaﬂaﬁR[; Comparlng w1th m we see that R defines a change of
trivialization which satisfies 7 = Ry. Since 5 = R™!7 is in the CO(G) orbit of 7 € Z 1(G) it follows
that 7 € Z1(G) n C1(H) = Z!(H). Any other representative R’ for R is related by R}, = R,h;! for

some h € C°(H). It follows that the corresponding #’ is {’7;;;} = {hanaﬁh;}l}, so 1’ = hn belongs to
the same C(H)-orbit, and thus 7 € H!(H) is well-defined. In summary, the middle map of (A.34) is

H°(P x,,-1 G/H) —H'(H),
R [R7r] = [{ R rapRe ]

Finally, “exactness” means that

o The structure sheaf of P reduces from G to H if and only if there exists a reduction.

« Two reductions R; and R, lead to isomorphic H-bundles if and only if R; and R, are related
by a bundle automorphism.

Verifying these two points is a routine exercise in chasing the definitions.
For a trivial application of reduction when X is a point and G = GL(C"), we prove:

Theorem A.3.3. Let V be a vector space isomorphic to C". Then a reduction from the general frame
bundle Frg (V) = GL(C", V) to the unitary frame bundle Fry(V') = U(C", V) is equivalent to a
Hermitian metric h € Met(V).

Proof. There is an exact sequence
0 — U(C") — GL(C") — Met(C") — 0,
where the map GL(C") — Met(C") isg ~ (g™!)*g™!. Associated to each frame ¢ : C" — V, we

get the Hermitian metric h = (¢=1)*¢L. It’s clear that ¢ is orthonormal with respect to this metric.
Conversely, given a Hermitian metric h, we can represent it as (¢~1)* ¢! for some frame ¢. ]

A more interesting application is
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Theorem A.3.4. Over a complex manifold X, a reduction from a smooth vector bundle E - X to a

— =2
holomorphic vector bundle is equivalent to a 0-operator on E which satisfies 0 = 0.

There is a sequence of sheaves given by
0 — O(GL(n)) — C*=(GL(n)) — Hol(n) — 0.

The map to Hol(n) is given by g — ggg‘l, where g denotes the operator corresponding to multiplica-
tion by g. Exactness at the center is simply the statement that

= 4 —

gog ' =g'og”! — a(g™'g) =0.

Surjectivity follows from a standard integrability theorem. For the proof, see [DK97] (2.1.53). An
element 0 € Hol(n) transforms as

0 udu'=0-(ou)u’',

which is the transformation law for a genuine 9 operator on the associated holomorphic vector
bundle. Thus holomorphic structures correspond to d operators.

A.3.2 The gauge principle

Let P — X be a principal G-bundle, and let g denote the Lie algebra of G. Recall that P has a right
G-action. Let mg(g) denote the right action p — pg. For any y € g, let £, denote the vector field on
P generated by the flow mg (e "). The vector fields ¢, generate the vertical tangent space T"P of P,
which is the kernel of 7, : TP — TM. Observe that £,g is generated by the flow p > pglegrs ',
$0 £yg7! = Lgyp1.

Inside of Q!(P; n*(adp)) are the “basic” one-forms 7* (Q!(X;adp)), which pull back from X. Since
m.(€,) = 0, we have a(€,) = 0. A point in the adjoint bundle adp is an equivalence class of the form

[p. x] ~ [pg ", gxg™"]. Thus
n*(adp) = {(q,[p, x]) € P xadp | n(q) = 7(p)}.

Since a is a pullback, its adp values are constant in the fiber direction. Specifically, if v, € T, P, then
there is some y € g such that forall g € G,

a(veg™) = (pg ' [p> x]) = (pg™". [pe " 8x8™'])-

We can identify 7* (adp) with TV P via the isomorphism

(p.[p>x]) = € atp.

Under this identification, a € Q!(P; TV P) satisfies
a(vpg™') = g1 = a(vy)g "
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In fact, we can identify Q!(X;adp) with the set of a € Q!(P; TV P) satisfying
a(¢,) =0and a(vg) = a(v)gforve TP,geG. (A.35)
Definition A.3.5. The set of smooth connections Ap on P is

Ap:={Ae Q'(P;T'P) | A(¢,) = ¢, and A(vg) = A(v)g forallv e TP,g e G}.

The difference of any two connections a = A’ — A belongs to Q!(X;adp) by the identification (A.35).
In fact, Ap is an affine space modeled on Q!(X;adp).

We will now define the associated connection p(A) on any associated fiber bundle E = P x, F. Let
TVE := ker(7,) denote the vertical tangent bundle of E. The connection p(A) will be an element of
Q!(E; T'E). We will define it on Q!(P x F; TF) and show that it passes to the quotient P x F — E.
For a vector v, + vy € T(, r)P x F we define

p(A)(vy +vs) = p(A(vy)) + vy

Consider (p, f) = ([« 8] » f). Then for p(A) to descend to the quotient P x F — P x,, F, it must
vanish along the vector fields generated by

([%a> gee™'], p(eX) f).
Wehavev, = £, and vy = p.(-¢,),soindeed p(A)(v,+vs) = 0,and p(A) descends to Q! (PxF; T'E).
If E - X is a fiber bundle E = P x,, F and A € Ap, then for s € Q°(X; E), we define the covariant
derivative V »s := s*(p(A)) € Q1(X;s*(TYE)).

If p is left multiplication m; on G, then m;(A) = A. For a local section ¢, we have V¢ €
QY X;¢* (T P)). If we view ¢ as an element of Isox (G, P), then ¢~V ¢ € Q1(X; T.G) = Q1(X; g).
For any local trivialization ¢, we define the local connection one-form Ay = ¢~V 4¢. For a local
section ¢ € Q%(X; P) and g € Q°(X; G), we have the transformation rule

Agg = (68)7'Va(pg)
= (¢g) " ((Vag)g + ¢dg)
=g (¢7'Vap)g +g'dg
=g 'Ayg+g 'dg e Q'(X;g).

Similarly,
Aggr =8Ag ' — (dg)g ™ € Q'(X;g).
We now explain why this is called the connection one-form. If s € Q!(X; E) is a section of a fiber
bundle E, then ¢-1s € Q! (U; F) is the ¢-trivialized section. We compute
Vas = VA(¢¢7IS)
= ¢d(¢7's) + p(Vag)(¢7's)
= ¢ (d+p(Ay)) (¢7's).
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Definition A.3.6. The group of smooth bundle automorphisms, or gauge transformations of a bundle
Pis
gP = QO(X, AdP).

For any fiber bundle E — X associated to P, we get an action of Gp on sections Q°(X; E) given by

s p(g)s.

For any operator D : Q°(E;) — Q°(E,), the natural action is

D~ pr,(g)Dpr, (87)-
For example,

VargVag™

=Va-(Vag)g™,
where (V4g)g™! € Q'(X;adp). This defines an action of Gp on Ap given by
A g(A)=A-(Vag)g "
If we examine this expression in a local frame ¢ and define g4 := ¢~'g, then
A=¢(Ay— (dgg + Apgy —8sAs)E,")

= ¢(gpApgs —dgegy')
= (p(A(pgg;l).

This illustrates the fact that locally, a gauge transformation is equivalent to a change of trivialization.

Definition A.3.7. The gauge principle is the observation that under the action Gp on both Ap and
fiber bundles, expressions involving V 4 and associated operators transform equivariantly.

A.3.3 Connections and differential operators

If we have a trivialization ¢, of P, then for the ¢,-trivialized forms Q*(X; V5),, we have

Q' (X;Vp)a 2 Ve Q(X).
We extend our operators d, d*, pw(R), the inner product -, etc. from Q*(X) to operators d,, d;, -,
pw(R), etc. which act only on Q°*(X), componentwise. (Note that differential operators depend on

¢4, while tensorial operators like - and pw (R) are independent of the choice of s,, and thus don’t
require an & subscript.)

If we also have a frame {e;} for TX, then we similarly extend operators 1, €, L ,, £ , etc.

—Ot,i’ —Ot,i’ —,i

which act only on the Q°(X) component of V ® Q°(X). A change of frame G then acts on the
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Q*(X) component. Since all these operators act only on the form component, they are G-invariant:

g{li} =L g{ei} :ei’ g{ég,i} :ég,i’ g{da} :da’ g{za,i} :za,i’
For an operator D to be G-equivariant, it should satisty
g {20{} = goc Qog g;l
However, a differential operator such as 9, ; satisfies
g {Qa,i} = Q(x,i

= g(x Qa,ig&l + [Qo{,i’ ga] g;l
= 8a Q(x,ig;l + (0u,i8a) 82>

where d,,;g, at the point x € X is an element of T()G.

A connection A on P is equivalent to a collection of g-valued functions {A,; € Q°(X;g)}, which
transform as

G(A)oc,i = GjiAot,j; and g{Aa,i} = gocAoc,ig;I - (aa,iga)ggl-
Given some connection A, we define the covariant derivative on Q°*(X; V) by
(ZA,,')OC = Za,,- +Agi

We verify that V , . is equivariant:

g{(V,)a} =V, +8uAuigs' - ((0i84)8s")
= 8a ¥, 8 + [ Vo 8] (82") — ((0i8a)8")

= 8a voc,i g;l .

Suppose V is a vector space equipped with a G-invariant inner product denoted by (vw) for v, w € V.
Given B, C € Q*(X, Vp), we define the inner product of B and C by

/X<B~C> :=fX(B-c)dvolM.

Integration by parts for V , ; is

[ (Vasa-p)= [ (@B advolu+ [ («-9arB).
where the formal metric adjoint is
Vai' =VaitAy: (A.36)
where V; ; is given by (A.31). Usually A,,; will be antisymmetric, so A, ; = ~Aq,.
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A.3.4 Curvature of principal bundles

Without loss of generality we will fix some trivialization ¢,. Since the subscript « is fixed, it becomes
somewhat redundant, though it still serves the purpose of distinguishing between a section itself
and its components. We omit the subscript « with the hope that the distinction will be clear from
context.

Define the curvature components
(FA)ij = ,CiAJ - EJA, + I:A,,A]:I - C,‘k]‘Ak.
This expression arises naturally from

VaiVaj—VaVai—¢*iVak (A.37)
= (V, +Al)(vj +A]) — (V] +A])(V1 + A,) - Cikj(Vk +Ak)
= Rl‘jkg€klg + I:VDA]] — [VJ’A’:I + I:A”AJ:I - C,‘ijk

= RijkeEkle + (Fa)ij-

The components (Fy);; transform as g {(F.)ij} = g(Fa)ijg™", so (Fa);j € Q°(M;adp), where ad
is the G-vector space g equipped with the adjoint action. Furthermore, under a change of frame,
G((FA),]) = Gi/iGj/j(FA),'j, SO FA = %(FA),'jeij € QZ(M;adp).

We define the equivariant operator
dy=€'Va,.

If A is a metric connection, so that AT = —A;, then its formal metric adjoint is
d;; = (V:— +A?)li =—1Vi— liAi =—1iVa,.

We verify the standard result

(dA)2 = GiVA)iGjVA,]‘

= eiij,ivA,j +é [VA,i) Ej] Va,j
1 ..

= Ee’f (VA,iVA,j —Va,jVa,i- CiijA,k)
1 g g

=5 (Rijket?']kle + el](FA)ij)

=FyA.

The Riemannian curvature cancels because of the first Bianchi identity (A.29).
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Appendix B

Fundamental computations

B.1 Weitzenbock formulas for real differential forms

Theorem B.1.1 (Weitzenbock formula for forms). As operators on differential forms,
V'V =d*d+dd* + pw(R), (B.1)
where
pw(R) = R;jxe€'ie* 1’ (B.2)

and the operators € and 1 are defined in[A.1.4}

In the proof, we will use the standard Clifford algebra representation (A.10) on differential forms.
The associated Dirac operator ¢ is

d=y'Vi=€'V,-1'V,=d+d",

and

#=d*d+dd*. (B.3)
Lemma B.1.2. The curvature term pw(R) is

pw(R) = =2y ([Vi, V] - ¢i* Vi) . (B.4)

Proof. First note that pw(R) = —3p"/R;j, since

—5V7Rij = _E(el —1')(€/ = V) Rijreets

1, .. .. 1 .. 1 ..
_ k¢ ijk ¢ ije k
= E(Gll] + IIGJ)RijkgG "= 56 J ijkfl + El J ,-]-kge

= pw(R),
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the extraneous curvature terms cancelling by the first Bianchi identity (A.29). Finally, note that

Rij = [Vi, Vj] - Ciijk.

0
Proof of Theorem We compute
d*d+dd* - Vv*V + pw(R)
1 ..
=a2—v*v—§y”([v,~,vj] —¢i*;V) (B.5)
. . . 1 ..
=YV Vi + (Vi + T) g, - 777 (Vij= Vi = ¢i*3Vi)
= i ,]—ylkF,JkV])+((a,g”)V] +%+ FkkJV])
1, .. . 1 ..
M+ E)’”(rikj -T}*) Vi
= (—y™* T = (BT + T7) + LT + E(Y’k ~ YTV
. 1, . . : .
= (—y*+ E(Y’k A VIS v
=0.
[

Let X be an oriented Riemannian manifold with boundary Y = dX, andleti : Y < X be the inclusion
map. Let Q°(X)|y denote the pullback i*Q*(X). We identify Q°(Y') with a subspace of Q*(X)|y;
specifically if e, is the unit outward normal along Y, then Q°(Y’)  ker a,,. The natural complement
is im a,, which we identify with Q*~!(Y'). This gives us the decomposition

Q*(X)|yz2Q(Y)® Q7 !(Y). (B.6)

Explicitly, if € Q*(X), then
Blv=p +e"nf, (B)

where

B' = i*(B), and B* = i*(a,B) = (~1)"®*D « i*(+p).

Let {e;}"", bea frame for Y. Let V! denote the Levi-Civita connection on Q*(Y). We may extend it
to Q°(X)|y by the rule Vle” := 0. It is related to the Levi-Civita connection V on M by

vi:v‘i‘ +N,‘j (Gnlj—€jl,7), (Bg)

where Nj; := e - V;e;j is the second fundamental form. (For the boundary of a Euclidean ball, the
second fundamental form is negative-definite due to the outward choice of conormal.) The mean
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curvature of Y is defined by
n-1
H:=) N (B.9)
i=1

An important application of (B.8) are the formulas

(dB)|y =dpl +dtn (B - NBI - dp*), (B.10)
(d*B)|y = (-p*+d*Bl + NBY) + dt A -d*B*.

Theorem B.1.3 (Integrated Weitzenbdck formula for forms). If X is a manifold with boundary 0X =Y,
for any differential forms a, § € Q*(X),

AVa-VﬁzfX(dcx-dﬁ+d*oc-d*[3+oc-pw(R)ﬁ)+
+fy(oc“ I +at-d Il al N v ot (H-N)B), (B

where py is (B.2), all and a* are respectively the parallel and perpendicular components of a along the
boundary (B.7), N is the second fundamental form acting as a derivation (Definition[A.1.3), and H is
the mean curvature (B.9)).

Proof. Again we will use the standard Clifford algebra representation (A.10]) on differential forms.
From (B.1), we know that

[ e (- 77+ pu(R)) B) =0,
Adding this to the left hand side of (B.11)), we get a sum of two boundary terms
JA(va B 7 V) + (a- FB - Jar-38)).

It remains to show that these combine to give the right hand side of (B.11). The first boundary term
was computed in (A.32). For the second boundary term, we use (A.30) to compute

Ayioc-@ﬁtidvolyz/}((Viyioc-¢‘9+yia-vi§9/3+l"jfiyioc-&[3’)
— [ (pa- 98- #8).

Therefore,
JA(va-vB-a- v V) + (a- PR~ Ja-9B))
- fy (a-gijvjﬁ -y'a- aﬁ) 1;dvolx
= fy (oc (g + yif)vjﬁ) 1;dvoly.
Consider an orthonormal coframe {e”, e!, e?,...,e" !} along 0M, where e is the outward unit
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conormal. The volume form dvoly on Y is 1,dvoly. The above integral reduces to

fota (g y)5:6).

Since the i = # term vanishes, we assume i # 7, which allows us to cancel the g"* term and to get

= [ {-y"a-y'vip)
X
= fX (—yra-y (] + Nyer)p)
= [ (e @+ y (Ve = Nigelt,)B)
Now we express « and f3 in terms of parallel and perpendicular components:

yla=—at +e"Anal,

@IIﬂ =(dl + d*ll)(ﬁll +e A BY),
Y-l g =—at-dlpl —al - dlg,
o - Y1y (Nijes; — Nijel1y)) B = a - ((—1")€' Nyje' ;B — e(—11) Ny;e/ )
= Nyja - (€';80 + e A 1ie/BY)
=al .NBl+at- (H-N)B*.

Putting everything together, we get the desired boundary term for (B.11). O

B.2 Weitzenbock formula for bundle-valued differential forms

Theorem B.2.1 (Weitzenbock formulae for bundle-valued forms). Let M be an oriented manifold
with boundary. For any associated vector bundle E — M with a metric connection A,

VEVA = d;;dA + dAd;; + pw(R) + Fy, (B12)
where py is (B.2), Fa acts on form components as a derivation (Definition|A.1.3) and with the associated
action on E-components. Furthermore, for any By, B, € Q*(M; E),

L (VABI : VABz> = /;( <B1 . (pw(R) + FA)B2 + dABl : dABz + d;;Bl . d232> +
+ / <B! -d'B,+ B, 4B} + B, NB, + B, - (H- N)B;) , (B13)
Y

where all and a* are respectively the parallel and perpendicular components of a along the boundary

(B-7), N is the second fundamental form acting as a derivation (Definition[A.1.3), and H is the mean
curvature (B.9).

Upon substituting V ~ V4, the proofs of Theorem and Theorem work with minor
modifications. First, note that we must replace (B.3)) with
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i =dida+dad; + (Fan) + (FaV).
Also, we must modify (B.4) in accordance with (A.37). The extra term is

~3Y(Fa)ij = €' (Fa»)ij = 3(Fav)ije” = 3(Fa*)ijt”
= Fp — (Fan) = (Fav).

The analogue of is thus
—%Yij ([VA,i; VA,]'] - Cikij,k) = pw(R) + FA — (FA/\) — (FAV).

Consequently,

1 ..
dida+dady = ViVa+ pw(R) + Fa= 9= ViVa= 29" ([Vas Vas] - ¢ iVax),

and the same computation (B.5]) proves (B.12) after adding the subscript A to all differential operators.
Similarly, to get (B.13), the same proof of Theorem applies after adding subscripts of A.

B.3 Representations of Riemannian curvature

The goal of this section is to prove Theorem about how the Weitzenbock representation of the
Riemannian curvature acts on differential forms.

An algebraic curvature tensor is a rank four tensor satistying (A.29). Associated to any algebraic

curvature tensor R are the tensors

_ y s
S e o Din i L0 ._ s
Ricik := Rijkeg’" s == Ric;;g", Ric}, = Ricjx - ;gik.

The Kuklari-Nomizu product A produces an algebraic curvature tensor u A v from two symmetric
rank two tensors u and v by the formula

(un V)ijke = UikVie + UjeVik — UieVjk — UjikVie-

We may decompose R as

N

R=W+
’/l_

where W is the Weyl tensor, which is defined by the above relation, and satisfies
Wijkeg’ = 0 forall i, k.

We define an action of R on forms by
1
pn(R) = _ZRijkee Tike, (B.15)
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and is characterized by the property
eij . pN(R)ekl = Rijkl-

The subscript N stands for “normal ordered,” in reference to the factor €'ix, from the fermionic
oscillator algebra.

Lemma B.3.1. The representation pw(R) defined in is related to px(R) by
pw(R) = 2px(R) - Ric,

where Ric acts as a derivation, as in Definition

Proof. Working in an orthonormal frame so that g;; = §;,

1 g
2pn(R) = _ERijkfeljlkg

1 g
=5 (Rikej + Rigji) €1%¢

1 o .
¢, jk ke
= ER,’jke(El * 4 ey ])

= —Rijkeeiklje
= R,'jkg<-:"tjekt‘f - RijjeGile
= pw(R) + pp(Ric).

]

Theorem B.3.2. Let M be a Riemannian manifold of dimension n. Then the action pw(R) on QP (M)
decomposes as

_ n-2p,. __ pp-1)

pw(R) =2pn(W) - n—ZRlC_(n—l)(n—Z)S (B.16)
_ _n=2pn.o_pn-p)
=2pn(W) n_szc n(n—l)s'

Proof. The second equality follows from the first via the identity

Ric = Ric® + Zs.
n

To obtain the first equality, we combine Lemma [B.3.1| with (B.14), and use the identities

px(Ric A g) = (p - 1)Ric, pn(gng) =p(p-1),
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to compute

pw(R) =2pn(R) - Ric

=2pn(W) + —— (pN(Rich) - ﬁm(gxg)) — Ric
_ n-2p.. p(p-1)
=2pn(W) - — Ric - (n—l)(n—2)s'

B.4 Weyl curvature on a four-manifold

On a four-manifold, the Weyl curvature decomposes into two components W = W+ @ W~ which
act via

pr(W*) € Q°(X; Endgy (A>*T*X))

as symmetric traceless endomorphisms [AHS78]|, where py is defined by (B.15). This representation
is faithful, so we make it implicit and declare

W* € Q°(X; Endgy,, (A** T* X)).
This defines a quadratic form on B € A>*T*X given by
B- W*B.
We define an operator ® such that
B-W*B=W=*-(BoB).
More generally, for any Euclidean vector space V, we define the bilinear operation

©:V x V = Endgn2 (V),

VOW:= g (vew).

For example, pw(R) (B.16)) acting on Q> is

and induces the bilinear form

B-pw(R)B =-1s|B[’+2W* - (B® B).
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B.5 The Weitzenbock formula for self-dual two-forms

In this section, we specialize (B.13) to the case n = 4 with an adjoint-valued self-dual two-form
B =B, =B, e 0>*(M;adp).

Note that
FaB =[(Fa)ij€'VB] = ~1x [3(Ea)ij ¢/ 1cB] = [Fa. B] = [F} . B,

and
B'=«Bl,  dsB=-xdiB,  (B-pw(R)B)=-1s|B +2W"-(Bo B),

where @ is the traceless symmetric product defined in Section[B.4} Thus our equation (B.13) becomes
IVaBI” = [ (B-pw(R)B+ B [F;.B))+ |duB|" + |d;B]* +

+2/ (B” -dy « Bl +B' -NB”).
Y

Dividing by four, performing some substitutions, using (A.25) to get (B - [F; .B]) = (F; - [B.B]),
and making py implicit, we obtain

LIdB|? = 1 [VaB|? + fX (s|BP - 6W* - (Bo B))+ (B.17)

—iL(FK-[B.B])—%A(B”-(dAn*+N)BH>.

The unintegrated Weitzenbock formula will also be useful. Note that (B.12)) becomes
ViVAB =2d,d;B + (~1s +2W*) B + [F4. B]. (B.18)
In particular, note that we can obtain an expression for the Laplacian of [B|” as

$A[BI* +5|V4B[ =5 (B- V4V4B)
1(B-dad;B) - (s|B -6W* - (Bo B)) + 1 (B-[F;.B]). (B.19)
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Appendix C

Chern-Simons theory

C.1 An overview of Chern-Simons theory and topology

On a Lie group G, for any y € g let £, denote the left-invariant vector field which generates the flow

d
£, := —R, s
L Th t=0
where R, denotes right-multiplication by g € G. Define the tautological g-valued one-form « ¢
Q'(Gsg) by
a-€,=x.

By the conventions for the metric () on g from (A.18), if « is the tautological g-valued one-form on
G, then
(anfanal)eQ*(G)

represents 2472 times an element of H3(G;Z) when G = Sp(1). Closedness follows from da +
3 [a A a] = 0. To compute the normalization, we choose a basis { yx } for g with dual basis {e’}. We
compute
(o nfanal) = (rexe) cif e

In the case of Sp(1), we use x; = i, x2 = j, x3 = k so that ¢;*; = 2¢;5, and (Xin) = 1. Now
gijke’k = 6123, where the e’ are dual to the y;. The left-invariant vector fields corresponding to y;
are orthonormal on the unit quaternions, so ./‘Sp(l) e12® = vol(S?) = 272. Putting everything together,
we compute

f5p(1) (a A [aAal) =242

In the Leray-Serre spectral sequence for the fibration Sp(1) — ESp(1) — BSp(1) with integral coefhi-
cients, we see that (24712)~! (a A [a A a]) represents a generator of H*>(Sp(1); Z) which transgresses
to the second Chern class ¢, € H*(BSp(1);Z).

The constant for SO(3) differs slightly from Sp(1). Again we choose y; so that ¢;; = 2¢;j, and
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(xixj) = 1. Note that Jsozy €7 = vol(RP?) = 712, s0

fso(s) (an[anal)=127%

The class (2472)7! (a A [a A «]) transgresses to —% p; € H*(BSO(3);R). To understand this § factor,
we examine the fibration SO(3) - ESO(3) — BSO(3), and its SO(2)-quotient S> - BSO(2) —
BSO(3). Though we will need them only through degree five, the cohomology rings of BSO(3) are

H*(BSO(3);Z) = Z|e, p1] | 2e,
H*(BSO(3);Zy) = Zo[wa, ws],

where e € H*(BSO(3);Z) is the universal Euler class, p; € H*(BSO(3);Z) is the universal Pontrya-
gin class, and w; € H'(BSO(3);Z,) are the Stiefel-Whitney classes. Even without this foreknowledge,
together the two Leray-Serre spectral sequences of these fibrations easily determine H*(BSO(3);Z)

through degree five:

We observe that under d,, the elements of H*(SO(3);Z) not divisible by two must hit

w, € H2(BSO(3); HX(SO(3))) 2 Z,.
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The surviving even elements of H3(SO(3);Z) under d, must hit the integral multiples of p,. If 2ZZ
denotes the kernel of d,, then the isomorphism d, : 2Z — Z naturally carries a factor of +5. This
explains why half an integral class can transgress to a quarter of an integral class.

Let P be a principal bundle, with connection A € A(P) c Q!(P; gp). The restriction of A to any fiber

is a. Using the Leray-Serre filtration for de Rham cohomology, we transgress (2472)~! (a A [a A «])
by

(AN[ANA]) 0 0 0 0
0 0 3<FAA[AAA]> 0 0

0 0 —6(ANE,) 0 0
0 0 0 0 —6<FA/\FA>

This motivates us to define the Chern-Simons form
CS(A):=(AA(L[ANA]-Fa))eQ*(P).
On fibers, CS(A) restricts to 2 (a A [a A «]), and dCS(A) = — (Fa A Fa4). This exact form
(2m)72dCS(A) € Q*(P)
represents the pullback of a cohomology class in H*(M;Z) given by

;-3¢ forU(nm),

(2m)?dCS(4) = ~(2m)  (Fo n Fy) = {—ipl for O(n).

Compare with p. 42 and p. 164 of [DK97], given our normalization (A.18].

On a four-manifold, we define the instanton number
k= —(27)2 / (Fu A Fy) = (271)2 f dCS(A). (C.1)
b'e b'e
To obtain a basic form, we define the Chern-Simons cocycle CS : A x A - R by
CS(A,Ag) :=(an(:[ana]l-Fs—F4,)), wherea = A - A,. (C.2)
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In the special case of a trivial bundle, CS(A) = CS(A, 0).

The Chern-Simons cocycle satisfies the cocycle condition
CS(A1, Ay) + CS(Ay, Az) + CS(As, Ay) € d(Q*(X)).
Specifically,

CS(A},Ay) +CS(A,, As3) + CS(As,A)) =
=3d((A1—A) A (A2 —A3) + (A - A3) A (A3 —A)) + (A3 - A) A (A1 - Ay)).

The cocycle condition implies that over a three-manifold Y, by fixing any A, the function

Aws f CS(A, Ao)
Y

gives a well-defined map A — R, unique up to a constant depending on A,. Furthermore, in terms
of Ay we get the formula [, CS(A;, A,) = [, CS(A1, Ag) — [ CS(Az, A).

We compute

a:=A-A,,
dAa:FA—FAO+%[a/\a],
dAFAO = [a/\FAO],

SO

dCS(A,Ap) =(daan(:[ana]—Fa-Fa,)+an(daFa, +3[andsal))
= <(FA—FA0+%[a/\a])/\(é[a/\a]—FA—FAO)+
+an([anFu]+1i[an(Fa—Fy, +%[a/\a])]))

= (Fyy AFg, — Fo A Fy+ 2an lanfaral])

= - <FA A FA> + (FAO /\FA0> .

Next we will determine the effect of a gauge transformation g by computing CS(g{A}, A). We will
need another cocycle

A(g, A Ag) = ((A-Ao) A (g7 (A~ Ao)g +8 ' dag + (da,8)g )
which satisfies the cocycle condition
A(g,Al,Az) + A(g, Az,Ag,) + A(g, A3,A1) =0.

A lengthy computation gives the identity

CS(g{A},A) =dA(g, A Ao) — ((g{Ac} — Ao) A (Fa, +8Farg™")) +
~1{(g7'da,8) A [(g7'du8) A (87'da8)]) -
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There are several observations to be made about this identity. First, the left side is manifestly
independent of A,. Next, the term on the right side involving A is exact. Therefore, f, CS(g{A},A)
depends only on g. Finally, in the case A, = 0 the identity reduces to

Jcs(etay.4) =~ [ ((e7'dg) n (g7 de) n (g7 d)]).

SCS(A) = (SAN(L[ANA]—Fy) + An (L[AnSA] - dsdA))
(AN (R[ANA]+3[ANA]-F4))+d(ANSA)-2((Fa+3[ANA])ASA)

d(ANGA)+2(8AN-F,).

In particular, on a closed 3-manifold Y,

5
= /YCS(A) - 24F,.
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