0.0.1 Quantize the harmonic oscillator

Recall Hooke’s law
The Lagrangian is

The Legendre transform gives

H=pv-L= p—Jr%kx2
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We define
w:=+/k/m
so that

The Hamiltonian equations are
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so that the classical solution is

x(t)=  Asin(wt+0),
p(t) = mwAcos(wt + 0).

The classical ground state is where energy is minimum: x = 0, p = 0, with H = 0.
To quantize, we replace p and x with operators

P =-ihv,

X = multiplication by the coordinate function x.
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0.0.2 Schrodinger equation and interpretation

Our Hamiltonian becomes

The Schrodinger equation for the wavefunction y(x, t) is
ihoyy = Hy.
To solve this equation, we find eigenfunctions yg(x) of H with eigenvalue E. Then
Y(x. ) = exp(Et/if)ys(x)

is a solution. Note that H is a self-adjoint operator, so under appropriate assumptions, we can find an orthonormal basis
of such eigenvectors. Assume we are given some initial wavefunction y(x) normalized so that ||y|,, = 1. We define
the coeflicients

ap = [ Fp(x)p(x) dx.

The solution to the initial value problem is

w(x, t) = ; ag exp(Et/ih)yg(x).



Given an operator O, the expectation value of O on the (normalized) state y is denoted (O)W and is defined to be

(0), = [ #(x)0y(x) dx.

For example, let &, denote the Dirac delta distribution about a point x, and let 8, denote the corresponding multipli-
cation operator. In this example,

(8x)y = ly(x)I’

is the standard expression for the probability density for a particle to be at the position x. All quantum measurements
can be expressed as expectation values. For example, the statistical variance of position is given by

((x-(x))?),
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0.0.3 Schrodinger equation for the harmonic oscillator

To solve the Schrodinger equation, we want to find L? solutions to the eigenvalue problem Hy = Ey. These correspond
to elements of
ker(H - E) n L.

Such solutions exist only for discrete values of E which turn out to be
E,=ho(n+%), n=0,1,2,...

The minimum energy is 3w with wavefunction
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w() - (%) exp( L ) )

Note that this is is a solution to the equation

()
M=\ —
m
with [y, = 1.

We can algebraically solve the harmonic oscillator eigenvalue problem by introducing raising and lowering operators

as in Lie algebra theory:
mw P
=/ (x-—), 2
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+ [mw ( p )
a' = — X+ —.
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H=hw(a'a+1).
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The Hamiltonian can be rewritten as

This choice of variables satisfies the helpful commutation relations

[a, aT] =1,
[H,a] = -hwa,
[H, aT] = +hwa.

Consequently, if  is an eigenvector with eigenvalue E, then a’y has eigenvalue E + hiw, and ay has eigenvalue E - hiw.
This would seem to imply that energy is not bounded from below. However, the descent ceases if

ay = 0.



Ignoring constants for the moment, this is the linear differential equation
(x=0x)y =0

which is solved by the Gaussian

)

x

y(x)=e 7.

Keeping track of the constants, we can solve ay = 0 to derive the expression (1) for the ground state y.
The probability distribution for the position of the ground state

p(x) =(dx),, ©)
is a normal distribution with standard deviation
h
G=1] ——
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0.0.4 The wave equation for a vibrating string

Consider a string of length ¢ which is fixed at two endpoints, for instance a guitar string. Let ¢(y, t) denote the dis-
placement of the string at position y € [0, £] and at time ¢. The motion is governed by the equation

(¢ =V,

for some constant ¢ which represents the propagation speed.
The general solution is a superposition of “vibrational modes”

¢(y,1) = i Ay sin(wyt + 6,)sin(nmny/e),
n=1

where

while A, and 0, are arbitrary.
Key Observation: Fourier coefficient of sin(nmy/¢) is a simple harmonic oscillator of frequency w,,.

In particular, if we denote these Fourier coeflicients by {b, }, then
b, = —wflbn.
The position of the string is

8(y) = i sin(nmy/e). (4)

Consequently, the string is isomorphic to an infinite sequence of independent harmonic oscillators with angular fre-
quencies
{w,=win},. .

0.0.5 Ground state of the quantum string

We showed in the previous section how each Fourier coefficient of a string is the position of a harmonic oscillator. Now
we consider what this means for the ground state of the quantum string.

In the quantum world, the position of a harmonic oscillator in the ground state is given by a Gaussian probability
distribution (3) with



Therefore, the coefficient ¢, in our Fourier series should assume a Gaussian probability distribution with standard

deviation
\/ h \/ he o
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Thus the ground state appears as a “random Fourier series” To understand what such a function looks like, we recall
some Fourier analysis.
Parseval’s theorem states that

[$l7: =3 X cin
We define the Sobolev norm H® by
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The rightmost expression makes sense for any real value of s.
Recall that variance is the square of standard deviation. For a quantity with zero mean, variance is the expected
value of the square. The expected value of ||¢ | ?—I‘ is thus
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which is finite only when s < 0. Hence ¢ is never expected to be in L%

The Sobolev embedding theorem, for dimension one, states that all functions in H® are continuous whenever s > 3.
Since ¢ € H* for all € > 0, the indefinite integral [ ¢ € H'™¢. Since 1 — ¢ > 4 for small ¢, we have that [ ¢ is continuous.
In particular, we expect to get a finite number if we average ¢ over some finite interval. However, it turns out that as the
width of this interval approaches zero, the corresponding averages diverge.

-

Y ¢

3l

Figure 1: Fifty samples of a string of length 7, averaged over intervals of length one
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Figure 3: Fifty samples of a string of length 7, averaged over intervals of length one-hundredth

0.0.6 Two-point correlation function for the quantum string

Recall that the displacement of a classical spring at the point y is given by (4)

o(y) = 2 ¢y sin(nmy/e).

Because ¢(y) represents an observable, we should promote this to an operator @ (y) for the quantum world. How are
we to define this operator? The Fourier coefficient ¢, represents the position of the n-th harmonic oscillator, so we
should replace ¢, with the position operator X,,. Thus we define

O(y) := i X, sin(nmy/e).

n=1

The most fundamental quantitative question we can ask is how do the values at two points corellate? In other words,
what's the expectation value

(@(y1)D(y2))-



We could tackle this problem computationally by picking a random Fourier series, evaluating it at y; and y,, and
multiplying the result. We would repeat for several trials and take the average of the results. Luckily there is an easier
way.

[}

(O(y1)D(y2)) Z n) sin(mmy,/€) sin(nmy,/t).

m,n=1

If m + n, then (X,,X,,) = (X) (X,) since the oscillators are independent. The mean positions (X,,) and (X, ) both
vanish, so the only nonzero terms are

(X2> sin(nmy;/€) sin(nmy,/£)

(@(y1)D(y2))
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=UZ (nmy,/€) sin(nmy/€)

n=1 n

Note that this sum is like an alternating harmonic series, and is only conditionally convergent! Physically, for this to be
sensible, we should think of n ranging up to some very large but finite cutoff.
We can explicitly evaluate our sum in terms of complex exponentials, making use of the Maclaurin series for In(1 +

x):

oo inx oo 1 n+1 ix\n .
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The final answer is ( )
he 1-cos(Z (y1+y2)
(@(y1)®(y2)) = —— In ; :
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The asymptote at y; = y, indicates that the expected “pointwise value squared” ( D y)2) is divergent.
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Figure 4: The two-point correlation function for a quantum string of unit length. The horizontal axis is y;, and the two

curves represent ¥, = 4 and y, = L. The vertical axis is in units of =2£
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