09-08 Notes

From Moduli
(Difference between revisions)
Jump to: navigation, search
(Removing all content from page)
Line 1: Line 1:
  
 
\begin{document}
 
 
\title{Lecture 2}
 
 
\newcommand{\e}{\epsilon}
 
\newcommand{\ra}{\rightarrow}
 
\newcommand{\g}{\mathfrak{g}}
 
\newcommand{\M}{\mathcal{M}}
 
\newcommand{\al}{\alpha}
 
\newcommand{\PR}{\mathcal{P}}
 
\newcommand{\Q}{\mathbb{Q}}
 
\newcommand{\G}{\mathcal{G}}
 
\newcommand{\F}{\mathcal{F}}
 
\newcommand{\C}{\mathbb{C}}
 
\newcommand{\R}{\mathbb{R}}
 
\newcommand{\A}{\mathcal{A}}
 
\newcommand{\B}{\mathcal{B}}
 
\newcommand{\dvol}{\text{ d\textit{vol}}}
 
 
\newtheorem*{thm}{Proposition}
 
\newtheorem*{thm1}{Claim}
 
 
\maketitle
 
 
\section{Sobolev Embedding}
 
 
  Let $X$ be smooth manifold of dimension $n$, $\dvol$, let $E$ be a
 
vector bundle over $X$, and let $A$ be a connection on $E$.  WE
 
define the Sobolev Space $L^p_{k,A}(X,E)$ to be the completion of
 
$C^\infty(X,E)$ with respect to the norm
 
 
$$||s||^p_{p,k,A}=\sum_{i=0}^k\int_{X}|\nabla_A\overset{i \text{
 
times}}{\circ\cdots\circ}\nabla_A s|^p\dvol$$
 
 
If no vector bundle is specified, then the trivial bundle, i.e. the
 
set of smooth functions on $X$, is implied.  Other notations for
 
this space are $W^p_{k,A}$ and in the case $p=2$, $H_{k,A}$.  We
 
would like to know when $L^p_k(X)=subset L^q_l(X)$ holds.  Define
 
the conformal weight of $L^p_k$, to be $k-n/p$.  Then for $f\in
 
L^p_k$, $||f(tx)||_{p,k}\simeq t^{k-n/p}||f(x)||$, so for such an
 
inclusion to hold, we must have $k-n/p\leq l-n/q$.  If $X$ is
 
compact, then this, and the condition that $k\geq l$ are sufficient
 
for $L^p_k(X)=subset L^q_l(X)$.  Furthermore, Rellich's theorem
 
tells us that if both inequalities are strict, this inclusion is a
 
compact embedding,
 
 
Let $C^{l,\al}(X)$ be the space of functions with $l$ derivatives,
 
such that the $l^{th}$ derivative is Holder continuous with exponent
 
$\al$.  If $0\al<1$, then $L^p_k(X)=subset C^{l,\al}\iff k\geq l$,
 
and $k-n/p\geq l+\al$.  The case $\al=0$ is much more subtle.  For
 
example, if $\Sigma$ is a Riemann surface, $L^2_1(\Sigma)\not=subset
 
C^0(\Sigma)$, and if $X$ is a 4-manifold, $L^4_1(X)\not=subset
 
C^0(X)$.
 
 
\section{Sobolev Multiplication}
 
 
Multiplication gives a map $L^p_k\times L^q_l\ra L^r_m$ if
 
$$\text{a) }(k-n/p)+(l-n/q)>m-n/r\text{  and  }k,l\geq m,\text{
 
or}$$
 
$$\text{b) }k-n/p>0\text{  and  }k-n/p,l-n/q\geq m-n/r$$
 
 
The proofs of these two results follow from the embedding theorem,
 
and Holder's inequality.
 
 
\section{Differentiation on Banach Spaces}
 
 
Let $X,Y$ be Banach spaces, $U=subset X$ an open subset, and $f:U\ra
 
Y$ a map.  We say that $f$ is differentiable at $x\in U$ if there is
 
$C>0$ and a bounded linear operator $A:X\ra Y$ such that
 
$||f(x+h)-f(x)-A\dot h||_Y\leq C||h||^2_X$  (this exponent 2 here is
 
not quite the correct definition, but it will do for our purposes).
 
In this case, we write $d_x f$ for $A$, and call this the derivative
 
of $f$ at $x$.
 
 
We say that $f$ is continuously differentiable if $x\mapsto A_x:U\ra
 
\text{Hom}(X,Y)$ is a continuous map.  We say that $f$ is twice
 
differentiable at $x$ is it is continuously differentiable at $x$,
 
and the map $x'\mapsto d_{x'}f$ is differentiable at $x$.  Iterating
 
this definition allows us to define higher derivatives.  In
 
particular, $f$ is $C^\infty$ if it has derivatives of all orders.
 
 
It turns out that if $(f,g)\mapsto \mu(f,g)=f\cdot g:L^p_k\times
 
L^q_l\ra L^r_m$ is continuous, then it is $C^\infty$.  In fact, if
 
we let $\delta$ denote a small variation, and letting
 
$d_{\mu(f,g)}(\delta f,\delta g)=f\delta g+g\delta f$, we have
 
 
$$||\mu(f+\delta f,g+\delta g)-\mu(f,g)-d_{\mu(f,g,)}(\delta
 
f,\delta g)||_{r.m}$$
 
 
$$=||\delta f\cdot\delta g||_{r,m}\leq C(||\delta f||_{p,k}||\delta
 
g||_{l,q})^2$$
 
 
where the last inequality follows from the multiplication theorem.
 
The derivative $d_{\mu(f,g)}(\delta f,\delta g)$ only depends on the
 
product $f\cdot g$, so the higher derivatives all vanish.
 
 
 
 
\section{Application to the Space of Connections}
 
 
Let $\pi:P\ra X$ be a principal $G$-bundle, and let $\g$ be the Lie
 
algebra of $G$.  Let $A$ denote a connection on $P$,
 
$F_A\in\Omega^2(X,\text{ad }P)$ its curvature.  If, $\tau$ is a
 
local trivialization, we let $a^\tau$ denote the one-form associated
 
to the connection, $A\mapsto F_A$ corresponds to $a^\tau\mapsto
 
da^\tau+[a^\tau\wedge a^\tau]$.  Recall the following definition:
 
 
$$\A^p_k=\{\text{connections }A|\text{ if }\tau:\pi^{-1}(U)\ra
 
U\times P\text{ is a }C^\infty\text{ trivialization such that if }$$
 
$$\phi\in C^\infty_0(U)\text{ we have } a_\tau\in\Omega^1(U,\g),
 
\phi a_\tau\in L^p_k(U,T^pU\otimes\g)\}$$
 
 
Let $\F:\A^p_k\ra L^q_l(X,\Lambda^2\otimes\text{ad }P)$ be the map
 
sending a connection to its curvature.  We would like to know when
 
$\F$ is continuous.  Clearly, $a^\tau\mapsto da^\tau$ is continuous
 
into $L^p_{k-1}$.  From the multiplication theorem, $a^\tau\mapsto
 
[a^\tau\wedge a^\tau]$ is continuous when
 
$(k-n/p)+(k-n/p)>(k-1)-n/p$, i.e. $k+1\geq n/p$.  In fact, in this
 
case it is $C^\infty$.  For example, for $n=4$, $(p,k)=(2,1)$,
 
$(q,l)=(4,0)$, $a^\tau\mapsto [a^\tau\wedge a^\tau]$ is continuous.
 
 
We specialize to the the situation where $G=O(n),U(n),Sp(n)$, amd
 
where $P$ is the frame bundle of some vector bundle $E$.  A smooth
 
gauge transformation $u$ is a smooth bundle endomorphism of $E$ such
 
that $u$ is an orthogonal (resp. unitary or symplectic) isomorphism
 
on each fiber.  In other words, $u\in C^\infty(X,\text{End}(E))$,
 
and $u^*u=1$, where $u^*$ denotes the transpose if $G=O(n)$, the
 
conjugate transpose if $G=U(n)$, etc.  We define
 
 
$$\G^p_k=\{u\in L^p_k(X,\text{End}(E))|u^*u=1\text{ almost everywhere}\}$$
 
 
We would like $\G^p_k$ to be a group, and ideally, a Banach Lie
 
group.
 
 
\begin{thm}
 
If $(k-n/p)>0$, then $\G^p_k$ is a Banach Lie group, and
 
$L^p_k(X,\text{End}(E))$ is a Banach space and algebra
 
\end{thm}
 
 
\begin{proof}
 
Define $\Phi:L^p_k(X,\text{End}(E))\ra L^p_k(X,\text{End}(E))$ by
 
$\Phi(s)=s^*s$. Then $\Phi$ is a $C^\infty$ map, and
 
$d_s\Phi(t)=s^*t+t^*s$.  Using $s^*s=1$, once easily sees that
 
$d_s\Phi(sw/2)=w$, so that $d_s\Phi$ is surjective for all
 
$s\in\G^p_k$. It is also clear that
 
$\text{ker}(d_s\Phi)=\{sr|r=-r^*\}$.  These two facts allows us to
 
apply the implicit function theorem to conclude that
 
$\Phi^{-1}(1)=subset\G^p_k$ is a Banach Lie group.
 
\end{proof}
 
 
We would next like to determine when $\G^p_k$ acts on $\A^q_l$. The
 
multiplication theorem implies that $L^p_{k-1}$ is an $L^p_k$ module
 
if $(k-n/p)$>0.  The argument at the end of section 3 shows that
 
this multiplication is smooth, so that $\G^p_k\times\A^p_{k-1}\ra
 
\A^p_{k-1}$ is a smooth.
 
 
Let $\B^p_{k-1}=\A^p_{k-1}/\G^p_k$.  We want to know when this is a
 
Hausdorff space.  Recall the following criterion:  If $G$ is a
 
topological group, that acts continuously on a topological space
 
$X$, then $X/G$ is Hausdorff if and only if the graph
 
$\Gamma=\{(x,xg)|x\in X,g\in G\}$ is closed in $X\times X$.
 
 
\begin{thm1}
 
If $(k-n/p)>0$, then $\B^p_{k-1}$ is Hausdorff
 
\end{thm1}
 
 
\begin{proof}
 
Suppose we have a sequence $(A_i,u_iA_i)$ that converges to $(A,A')$
 
in $L^p_{k-1}$.  Then $a^\tau_i$ converges to $a^\tau$ in $L^p_k$,
 
and $u^{-1}_idu_i+u^{-1}_ia^\tau_iu_i\ra a'^\tau$.  Rearranging this
 
gives $du_i=u_ia'^\tau-a^\tau_iu_i$.  Suppose $k=1$, $p=n+\e$.  Then
 
since $a^\tau_i$ converges, and $u_i$ are all in $\G^p_k$, this
 
implies that $du_i$ is uniformly bounded.  If we pass to a
 
subsequence where $u_i$ converges, say to $u$, in $C^0$, then $du_i$
 
converges in $L^{n+\e}$, so that $u_i$ converges to $u$ in
 
$L^{n+\e}_1$.  For $k>1$, one applies a bootstrap argument.
 
\end{proof}
 
 
 
\end{document}
 

Revision as of 19:39, 12 November 2008