Transformation of tangent and cotangent vectors

Suppose $f \in \Omega^{0}(M)$ is some fixed function, and $\gamma: \mathbb{R} \rightarrow M$ is some fixed path with $\gamma(0)=p$. Then

$$
\mathbb{R} \xrightarrow{\gamma} M \xrightarrow{f} \mathbb{R},
$$

so

$$
f \circ \gamma: \mathbb{R} \longrightarrow \mathbb{R}
$$

is some fixed function. Its derivative at zero is some fixed number

$$
(f \circ \gamma)^{\prime}(0) \in \mathbb{R}
$$

Geometrically, this number represents the directional derivative of f in the direction of $\dot{\gamma}(0)$. In local coordinates x_{1}, \ldots, x_{n} around p, we can write

$$
f=f\left(x_{1}, \ldots, x_{n}\right)
$$

and

$$
\gamma(t)=\left(\gamma_{1}(t), \ldots, \gamma_{n}(t)\right) .
$$

(Note that for the moment, we are suppressing the coordinate chart map $h: U \rightarrow \mathbb{R}^{n}$. Technically, we should be writing $\gamma_{i}(t)=h_{i}(\gamma(t))$, but this would make our expressions too complicated.)

By the chain rule,

$$
\begin{aligned}
(f \circ \gamma)^{\prime}(0) & =\left.\left.\frac{\partial f}{\partial x_{1}}\right|_{p} \frac{d \gamma_{1}}{d t}\right|_{t=0}+\left.\left.\frac{\partial f}{\partial x_{2}}\right|_{p} \frac{d \gamma_{2}}{d t}\right|_{t=0}+\cdots+\left.\left.\frac{\partial f}{\partial x_{n}}\right|_{p} \frac{d \gamma_{n}}{d t}\right|_{t=0} . \\
& =\underbrace{\left(\left.\frac{\partial f}{\partial x_{1}}\right|_{p} \varepsilon_{1}+\left.\frac{\partial f}{\partial x_{2}}\right|_{p} \varepsilon_{2}+\cdots+\left.\frac{\partial f}{\partial x_{n}}\right|_{p} \varepsilon_{n}\right)}_{\left.d f\right|_{p}} \cdot \underbrace{\left(\left.\frac{d \gamma_{1}}{d t}\right|_{t=0} e_{1}+\left.\frac{d \gamma_{2}}{d t}\right|_{t=0} e_{2}+\cdots+\left.\frac{d \gamma_{n}}{d t}\right|_{t=0} e_{n}\right)}_{\dot{j}(0)},
\end{aligned}
$$

where \cdot denotes the dual pairing

$$
\varepsilon_{i} \cdot e_{j}= \begin{cases}1 & \text { if } i=j \\ 0 & \text { if } i \neq j\end{cases}
$$

We abbreviate this formula by

$$
(f \circ \gamma)^{\prime}(0)=\left.d f\right|_{p} \cdot \dot{\gamma}(0)
$$

This final answer on the right

- is independent of coordinates (because the left side doesn't involve coordinates), and
- depends only on the first derivatives of both f at p, and γ at $t=0$ (from our coordinate expression).

We want to give coordinate-free definitions of tangent vectors $\dot{\gamma}(0)$ and cotangent vectors $\left.d f\right|_{p}$.

Definition. A tangent vector at $p \in M$ is an equivalence class of smooth paths $\gamma: \mathbb{R} \rightarrow M$ which satisfy $\gamma(0)=p$, where equivalence is determined by

$$
\left[\gamma_{1}\right] \sim\left[\gamma_{2}\right] \Longleftrightarrow \dot{\gamma}_{1}(0)=\dot{\gamma}_{2}(0) \text { in some/any coordinate chart. }
$$

(As a consequence of the transformation law for tangent vectors, we will see that if two tangent vectors agree in one chart, then they agree in every other chart.)

Definition. The set of such equivalence classes is called the tangent space at p, denoted by $T_{p} M$. Thus, if $v \in T_{p} M$, then we can write $v=\dot{\gamma}(0)=[\gamma]$ for some smooth path γ with $\gamma(0)=p$.

It's not obvious from this definition, but $T_{p} M$ is a vector space. Given two paths $\gamma_{1}, \gamma_{2}: \mathbb{R} \rightarrow M$ with $\gamma_{i}(0)=p$, we need to define addition $\left[\gamma_{1}\right]+\left[\gamma_{2}\right]$ as some vector $\left[\gamma_{3}\right]$. However, it's nonsensical to define $\gamma_{3}=\gamma_{1}+\gamma_{2}$ since we can't add points in a manifold. However, if we choose a coordinate chart for which $h(p)=\overrightarrow{0}$, then it makes sense to add the local coordinates of γ_{1} and γ_{2} to obtain local coordinates for γ_{3}. Scalar multiplication is similarly defined via a choice of local coordinates.

Another technicality is that a path γ may not remain in a single coordinate chart for all t. Since are concerned with the behavior around $\gamma(0)=p$, we need only consider paths $\gamma:[-\varepsilon, \varepsilon] \rightarrow M$.
Cotangent vectors behave more nicely. We give a similar definition:
Definition. A cotangent vector at $p \in M$ is an equivalence class of functions $f \in \Omega^{0}(M)$ with

$$
\left[f_{1}\right]=\left.\left[f_{2}\right] \Longleftrightarrow d f_{1}\right|_{p}=\left.d f_{2}\right|_{p}
$$

in some/any coordinate chart.
Definition. The set of such equivalence classes is called the cotangent space at p, denoted by $T_{p}^{*} M$.
There is no difficulty in defining the vector space structure of $T_{p}^{*} M$:

$$
\alpha\left[f_{1}\right]+\beta\left[f_{2}\right]=\left[\alpha f_{1}+\beta f_{2}\right] .
$$

At this point, we should understand how vectors and covectors transform under change of coordinates, and verify that our definitions don't depend on the choice of coordinates.

Using the coordinates $h_{1}=\left(x_{1}, \ldots, x_{n}\right)$, we have

$$
\begin{equation*}
d f=\frac{\partial f}{\partial x_{1}} \varepsilon_{1}+\frac{\partial f}{\partial x_{2}} \varepsilon_{2}+\cdots+\frac{\partial f}{\partial x_{n}} \varepsilon_{n} . \tag{1}
\end{equation*}
$$

If we instead use coordinates $h_{2}=\left(y_{1}, \ldots, y_{n}\right)$, then

$$
d f=\frac{\partial f}{\partial y_{1}} \tilde{\varepsilon}_{1}+\frac{\partial f}{\partial y_{2}} \tilde{\varepsilon}_{2}+\cdots+\frac{\partial f}{\partial x_{n}} \tilde{\varepsilon}_{n},
$$

where $\tilde{\varepsilon}_{i}$ are the covectors under h_{2}. From the chain rule

$$
\frac{\partial f}{\partial y_{i}}=\frac{\partial f}{\partial x_{1}} \frac{\partial x_{1}}{\partial y_{i}}+\cdots+\frac{\partial f}{\partial x_{n}} \frac{\partial x_{n}}{\partial y_{i}},
$$

we have

$$
\begin{align*}
& d f=\left(\frac{\partial f}{\partial x_{1}} \frac{\partial x_{1}}{\partial y_{1}}+\cdots+\frac{\partial f}{\partial x_{n}} \frac{\partial x_{n}}{\partial y_{1}}\right) \tilde{\varepsilon}_{1}+ \\
& \vdots \\
&+\left(\frac{\partial f}{\partial x_{1}} \frac{\partial x_{1}}{\partial y_{n}}+\cdots+\frac{\partial f}{\partial x_{n}} \frac{\partial x_{n}}{\partial y_{n}}\right) \tilde{\varepsilon}_{n} \\
&= \frac{\partial f}{\partial x_{1}}\left(\frac{\partial x_{1}}{\partial y_{1}} \tilde{\varepsilon}_{1}+\cdots+\frac{\partial x_{1}}{\partial y_{n}} \tilde{\varepsilon}_{n}\right)+ \tag{2}\\
& \vdots \\
&+\frac{\partial f}{\partial x_{n}}\left(\frac{\partial x_{n}}{\partial y_{1}} \tilde{\varepsilon}_{1}+\cdots+\frac{\partial x_{n}}{\partial y_{n}} \tilde{\varepsilon}_{n}\right) .
\end{align*}
$$

By comparing (1) and (2), we see that our expressions for different coordinate charts are consistent if we identify

$$
\varepsilon_{i} \longleftrightarrow \frac{\partial x_{i}}{\partial y_{1}} \tilde{\varepsilon}_{1}+\cdots+\frac{\partial x_{i}}{\partial y_{n}} \tilde{\varepsilon}_{n} .
$$

This justifies the notation $\varepsilon_{i}=d x_{i}$ and $\tilde{\varepsilon}_{i}=d y_{i}$, for then

$$
d x_{i}=\frac{\partial x_{i}}{\partial y_{1}} d y_{1}+\cdots+\frac{\partial x_{i}}{\partial y_{n}} d y_{n} .
$$

A similar transformation law for $x_{i}=y_{i}(t)$ suggests that

$$
\frac{d \gamma}{d t}=\frac{d \gamma_{1}}{d t} e_{1}+\cdots+\frac{d \gamma_{n}}{d t} e_{n}
$$

be written using

$$
e_{i}=\frac{\partial}{\partial x_{i}},
$$

because under a change of variables,

$$
\frac{\partial}{\partial x_{i}}=\frac{\partial y_{1}}{\partial x_{i}} \frac{\partial}{\partial y_{1}}+\cdots+\frac{\partial y_{n}}{\partial x_{i}} \frac{\partial}{\partial y_{n}} .
$$

This notation identifies a tangent vector with its corresponding directional derivative operator! Be warned that order matters, since $\frac{\partial}{\partial y_{j}} \frac{\partial y_{j}}{\partial x_{i}}$ denotes a second partial derivative, while $\frac{\partial y_{j}}{\partial x_{i}} \frac{\partial}{\partial y_{j}}$ is a differential operator.
Assembling the above results, we have
Transformation law The cotangent vector $d x_{i}$ transforms linearly into the $\left\{d y_{j}\right\}$ basis according to the matrix $\left[\frac{\partial x_{i}}{\partial y_{j}}\right]$. The tangent vector $\frac{\partial}{\partial x_{i}}$ transforms linearly into the $\left\{\frac{\partial}{\partial y_{j}}\right\}$ basis according to the matrix $\left[\frac{\partial y_{j}}{\partial x_{i}}\right]$.

These are Jacobian matrices for the coordinate transformations, going in opposite directions. Therefore, the matrices are inverses of each other.

Our definitions of tangent and cotangent vectors are well-defined, because equality in one coordinate chart differs from equality in another by an invertible linear map.

Theorem. If M^{n} is a smooth manifold, then $T_{p} M$ and $T_{p}^{*} M$ are dual spaces of dimension n. The duality pairing of $v \in T_{p} M$ with $\alpha \in T_{p}^{*} M$ is given by directional differentiation

$$
\alpha \cdot v:=(f \circ \gamma)^{\prime}(0) \text { where } \alpha=[f] \text { and } v=[\gamma] .
$$

Proof. Since these computations involve only first-derivatives, which are uniquely determined by α and v, it suffices to check this formula for any particular representatives for α and v.
Consider a local coordinate chart $U \subset V=\mathbb{R}^{n}$. For simplicity, suppose that the coordinates for p are $\overrightarrow{0}$. As usual, let $\left\{e_{i}=\frac{\partial}{\partial x_{i}}\right\}_{i=1}^{n}$ denote the standard basis of V, and $\left\{\varepsilon_{i}=d x_{i}\right\}_{i=1}^{n}$ the dual basis of V^{*}. Under this coordinate chart, any velocity vector $v \in T_{p} M$ can be uniquely expressed as $v=\sum v_{i} e_{i}$, and any covector can be uniquely expressed as $\alpha=\sum \alpha_{i} \varepsilon_{i}$. The dual pairing is

$$
\alpha \cdot v=\left(\sum \alpha_{i} \varepsilon_{i}\right) \cdot\left(\sum v_{j} e_{j}\right)=\sum \alpha_{i} v_{i}
$$

We need to pick representatives $[f]$ for α and $[\gamma]$ for v, and then verify the identity

$$
\alpha \cdot v \stackrel{?}{=}(f \circ \gamma)^{\prime}(0) .
$$

Set $\gamma=\left(v_{1} t, v_{2} t, \ldots, v_{n} t\right)$, and $f=\alpha_{1} x_{1}+\cdots+\alpha_{n} x_{n}$. By construction, it's clear that $\dot{\gamma}(0)=v$, and $\left.d f\right|_{p}=\alpha$. We compute that $f \circ \gamma(t)=\alpha_{1} v_{1} t+\cdots+\alpha_{n} v_{n} t$, so that $(f \circ \gamma)^{\prime}(0)=\sum \alpha_{i} v_{i}=\alpha \cdot v$, as desired.

Restoring the coordinate charts

Suppose we have a coordinate chart $\left(U_{1}, h_{1}\right)$ around $p \in M$ so that $h_{1}(p)=\overrightarrow{0}$. Let x_{1}, \ldots, x_{n} denote the local coordinates of $h_{1}\left(U_{1}\right) \subset \mathbb{R}^{n}$. Given a function $f \in C^{\infty}(M)$, the corresponding function on $C^{\infty}\left(h_{2}(U)\right)$ is $f \circ h_{1}^{-1}\left(x_{1}, \ldots, x_{n}\right)$, which is denoted by $f_{1}=\left(h_{1}^{-1}\right)^{*}(f)$. Similarly, if $\left(U_{2}, h_{2}\right)$ is another coordinate chart around p, the local representative for f in $C^{\infty}\left(h_{2}\left(U_{2}\right)\right)$ is $f_{2}=\left(h_{2}^{-1}\right)^{*}(f)$.
The transition function from $h_{1}\left(U_{1} \cap U_{2}\right)$ to $h_{2}\left(U_{1} \cap U_{2}\right)$ is

$$
h_{1}\left(U_{1} \cap U_{2}\right) \xrightarrow{h_{21}} h_{2}\left(U_{1} \cap U_{2}\right)
$$

given by

$$
h_{21}=h_{2} \circ h_{1}^{-1} .
$$

It relates f_{1} and f_{2} via

$$
f_{2}=\left(h_{21}^{-1}\right)^{*}\left(f_{1}\right) .
$$

