Transformation of tangent and cotangent vectors

Suppose f € Q°(M) is some fixed function, and y : R - M is some fixed path with y(0) = p. Then

R—Mm— R,

SO
foy: R—R

is some fixed function. Its derivative at zero is some fixed number
(fop)'(0)eR.

Geometrically, this number represents the directional derivative of f in the direction of y(0).

In local coordinates xy, . . ., x, around p, we can write

f=f(x1,...,x,)
and
y(8) = (y1(£)s - ya(t))-

(Note that for the moment, we are suppressing the coordinate chart map h : U — R". Technically,
we should be writing y;(t) = h;(y(t)), but this would make our expressions too complicated.)

By the chain rule,
: of | dyr of | dys of | dyn
o 0 = — _ e e .
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where - denotes the dual pairing
1 iz
S
0 ifi#j.

We abbreviate this formula by
(f2y)'(0) =dflp-y(0).

This final answer on the right

« is independent of coordinates (because the left side doesn’t involve coordinates), and

« depends only on the first derivatives of both f at p, and y at t = 0 (from our coordinate
expression).

We want to give coordinate-free definitions of tangent vectors y(0) and cotangent vectors d f|,.
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Definition. A tangent vector at p € M is an equivalence class of smooth paths y : R - M which
satisfy y(0) = p, where equivalence is determined by

[y1] ~ [y2] <= 91(0) = y2(0) in some/any coordinate chart.

(As a consequence of the transformation law for tangent vectors, we will see that if two tangent
vectors agree in one chart, then they agree in every other chart.)

Definition. The set of such equivalence classes is called the tangent space at p, denoted by T, M.
Thus, if v € T, M, then we can write v = y(0) = [y] for some smooth path y with y(0) = p.

It's not obvious from this definition, but T, M is a vector space. Given two paths y;,y, : R - M
with y;(0) = p, we need to define addition [y, ] +[y,] as some vector [y;]. However, it's nonsensical
to define y; = y; + y, since we can’t add points in a manifold. However, if we choose a coordinate
chart for which h(p) = 0, then it makes sense to add the local coordinates of y; and y, to obtain
local coordinates for y;. Scalar multiplication is similarly defined via a choice of local coordinates.

Another technicality is that a path y may not remain in a single coordinate chart for all . Since are
concerned with the behavior around y(0) = p, we need only consider paths y : [—¢,¢] - M.

Cotangent vectors behave more nicely. We give a similar definition:

Definition. A cotangent vector at p € M is an equivalence class of functions f € Q°(M) with

[Ail=[f] = dhlp=dfal,
in some/any coordinate chart.

Definition. The set of such equivalence classes is called the cotangent space at p, denoted by T,y M.
There is no difficulty in defining the vector space structure of T, M:
alfil + BLL2] = [afi+ Bfa].

At this point, we should understand how vectors and covectors transform under change of coordi-
nates, and verify that our definitions don’t depend on the choice of coordinates.

Using the coordinates h; = (x1,...,x,), we have
o o
df a—£61+a—isz+ +8£,8"' 1)
If we instead use coordinates 1, = (y1, ..., ¥,), then
— ﬁél + ﬁéZ 4o af én»
oy 0y, 0x,

where &; are the covectors under h,. From the chain rule
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we have

of dx; of ox,\ .
af = (8x1 o)1 o 0x,, 8y1)81+
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By comparing (1) and (2), we see that our expressions for different coordinate charts are consistent
if we identify
o0x; . ax,- .
Ep.

g > —& + -

oy1 8 Vn "
This justifies the notation ¢; = dx; and ; = dy;, for then

A similar transformation law for x; = y;(t) suggests that

d)/ _ le Yn
dt  dr BTG
be written using
€ = i,
ax,-

because under a change of variables,

0 ayl 0 + +ayn 0
ox;  0x; dy1 0x; 0Yn

This notation identifies a tangent Vector with its corresponding directional derivative operator! Be

warned that order matters, since ay denotes a second partial derivative, whlle aa. is a differ-
Vi

ential operator.

Assembling the above results, we have

Transformation law The cotangent vector dxl- transforms linearly into the {d yj} basis according

to the matrix [a;, ] The tangent vector 5~ transforms linearly into the { } basis according

to the matrix [gy ’]



These are Jacobian matrices for the coordinate transformations, going in opposite directions. There-
fore, the matrices are inverses of each other.

Our definitions of tangent and cotangent vectors are well-defined, because equality in one coordi-
nate chart differs from equality in another by an invertible linear map.

Theorem. If M" is a smooth manifold, then T,M and T; M are dual spaces of dimension n. The
duality pairing of v € T,M with a € T; M is given by directional differentiation

a-v:i=(foy)(0)wherea =[f] andv =y].

Proof. Since these computations involve only first-derivatives, which are uniquely determined by «
and v, it suffices to check this formula for any particular representatives for « and v.

Consider alocal coordinate chart U c V = R". For simplicity, suppose that the coordinates for p are
0. As usual, let {ei = 8%}:1—1 denote the standard basis of V, and {¢; = dxi}:':l the dual basis of V*.
Under this coordinate chart, any velocity vector v € T, M can be uniquely expressed as v = 3 v;e;,
and any covector can be uniquely expressed as a« = ) «;¢;. The dual pairing is

a-v=> ae) (O vie) = avi.

We need to pick representatives [ f] for « and [y] for v, and then verify the identity

a-vZ(foy)(0).

Sety = (vit,vat,...,vyt), and f = a;x; + -+ + a,x,. By construction, it’s clear that y(0) = v, and
df|, = a. We compute that f o y(t) = ayvit + - + a,v,t, so that (foy)'(0) = Y a;v; = a- v, as
desired. OJ

Restoring the coordinate charts

Suppose we have a coordinate chart (Uy, k) around p € M so that h;(p) = 0. Let xy, ..., x, denote
the local coordinates of h;(U;) ¢ R™. Given a function f € C*(M), the corresponding function
on C*(hy(U))is f o hi'(x1,...,x,), which is denoted by f; = (h;')*(f). Similarly, if (U, hy) is
another coordinate chart around p, the local representative for f in C*(h,(U,)) is fo = (h3')*(f).

The transition function from h;(U; N U,) to h,(U; n U,) is

hl(Ul N U2) A hz(Ul N U2)

given by
h21 = h2 o hl_l
It relates f; and f, via

fo=(h)*(fH).



