
Transformation of tangent and cotangent vectors

Suppose f ∈ Ω0(M) is some �xed function, and γ ∶ R→ M is some �xed path with γ(0) = p. �en

R
γ // M

f // R ,

so
f ○ γ ∶ R // R

is some �xed function. Its derivative at zero is some �xed number

( f ○ γ)′(0) ∈ R.

Geometrically, this number represents the directional derivative of f in the direction of γ̇(0).
In local coordinates x1, . . . , xn around p, we can write

f = f (x1, . . . , xn)

and
γ(t) = (γ1(t), . . . , γn(t)) .

(Note that for the moment, we are suppressing the coordinate chart map h ∶ U → Rn. Technically,
we should be writing γi(t) = hi(γ(t)), but this would make our expressions too complicated.)
By the chain rule,

( f ○ γ)′(0) = ∂ f
∂x1

∣
p

dγ1
dt

∣
t=0

+ ∂ f
∂x2

∣
p

dγ2
dt

∣
t=0

+⋯ + ∂ f
∂xn
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p

dγn
dt

∣
t=0
.

= ( ∂ f
∂x1

∣
p
ε1 +

∂ f
∂x2
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ε2 +⋯ + ∂ f

∂xn
∣
p
εn)
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γ̇(0)

,

where ⋅ denotes the dual pairing

εi ⋅ e j =
⎧⎪⎪⎨⎪⎪⎩

1 if i = j,
0 if i ≠ j.

We abbreviate this formula by
( f ○ γ)′(0) = d f ∣p ⋅ γ̇(0).

�is �nal answer on the right

• is independent of coordinates (because the le� side doesn’t involve coordinates), and

• depends only on the �rst derivatives of both f at p, and γ at t = 0 (from our coordinate
expression).

We want to give coordinate-free de�nitions of tangent vectors γ̇(0) and cotangent vectors d f ∣p.
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De�nition. A tangent vector at p ∈ M is an equivalence class of smooth paths γ ∶ R → M which
satisfy γ(0) = p, where equivalence is determined by

[γ1] ∼ [γ2] ⇐⇒ γ̇1(0) = γ̇2(0) in some/any coordinate chart.

(As a consequence of the transformation law for tangent vectors, we will see that if two tangent
vectors agree in one chart, then they agree in every other chart.)

De�nition. �e set of such equivalence classes is called the tangent space at p, denoted by TpM.
�us, if v ∈ TpM, then we can write v = γ̇(0) = [γ] for some smooth path γ with γ(0) = p.

It’s not obvious from this de�nition, but TpM is a vector space. Given two paths γ1, γ2 ∶ R → M
with γi(0) = p, we need to de�ne addition [γ1]+ [γ2] as some vector [γ3]. However, it’s nonsensical
to de�ne γ3 = γ1 + γ2 since we can’t add points in a manifold. However, if we choose a coordinate
chart for which h(p) = 0⃗, then it makes sense to add the local coordinates of γ1 and γ2 to obtain
local coordinates for γ3. Scalar multiplication is similarly de�ned via a choice of local coordinates.

Another technicality is that a path γ may not remain in a single coordinate chart for all t. Since are
concerned with the behavior around γ(0) = p, we need only consider paths γ ∶ [−ε, ε] → M.

Cotangent vectors behave more nicely. We give a similar de�nition:

De�nition. A cotangent vector at p ∈ M is an equivalence class of functions f ∈ Ω0(M) with

[ f1] = [ f2] ⇐⇒ d f1∣p = d f2∣p

in some/any coordinate chart.

De�nition. �e set of such equivalence classes is called the cotangent space at p, denoted by T∗
p M.

�ere is no di�culty in de�ning the vector space structure of T∗
p M:

α [ f1] + β [ f2] = [α f1 + β f2] .

At this point, we should understand how vectors and covectors transform under change of coordi-
nates, and verify that our de�nitions don’t depend on the choice of coordinates.

Using the coordinates h1 = (x1, . . . , xn), we have

d f = ∂ f
∂x1

ε1 +
∂ f
∂x2

ε2 +⋯ + ∂ f
∂xn

εn . (1)

If we instead use coordinates h2 = (y1, . . . , yn), then

d f = ∂ f
∂y1

ε̃1 +
∂ f
∂y2

ε̃2 +⋯ + ∂ f
∂xn

ε̃n ,

where ε̃i are the covectors under h2. From the chain rule

∂ f
∂yi

= ∂ f
∂x1

∂x1
∂yi

+⋯ + ∂ f
∂xn

∂xn
∂yi
,
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we have

d f = ( ∂ f
∂x1

∂x1
∂y1

+⋯ + ∂ f
∂xn

∂xn
∂y1

) ε̃1+

⋮

+ ( ∂ f
∂x1

∂x1
∂yn

+⋯ + ∂ f
∂xn

∂xn
∂yn

) ε̃n

= ∂ f
∂x1

(∂x1
∂y1

ε̃1 +⋯ + ∂x1
∂yn

ε̃n)+ (2)

⋮

+ ∂ f
∂xn

(∂xn
∂y1

ε̃1 +⋯ + ∂xn
∂yn

ε̃n) .

By comparing (1) and (2), we see that our expressions for di�erent coordinate charts are consistent
if we identify

εi ←→
∂xi
∂y1

ε̃1 +⋯ + ∂xi
∂yn

ε̃n .

�is justi�es the notation εi = dxi and ε̃i = dyi , for then

dxi =
∂xi
∂y1

dy1 +⋯ + ∂xi
∂yn

dyn .

A similar transformation law for xi = γi(t) suggests that

dγ
dt

= dγ1
dt

e1 +⋯ + dγn
dt

en

be written using

ei =
∂
∂xi
,

because under a change of variables,

∂
∂xi

= ∂y1
∂xi

∂
∂y1

+⋯ + ∂yn
∂xi

∂
∂yn
.

�is notation identi�es a tangent vector with its corresponding directional derivative operator! Be
warned that order matters, since ∂

∂y j
∂y j
∂x i denotes a second partial derivative, while

∂y j
∂x i

∂
∂y j
is a di�er-

ential operator.

Assembling the above results, we have

Transformation law �e cotangent vector dxi transforms linearly into the {dy j} basis according
to the matrix [ ∂x i

∂y j
]. �e tangent vector ∂

∂x i transforms linearly into the {
∂
∂y j

} basis according
to the matrix [ ∂y j

∂x i
].
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�ese are Jacobianmatrices for the coordinate transformations, going in opposite directions. �ere-
fore, the matrices are inverses of each other.

Our de�nitions of tangent and cotangent vectors are well-de�ned, because equality in one coordi-
nate chart di�ers from equality in another by an invertible linear map.

�eorem. If Mn is a smooth manifold, then TpM and T∗
p M are dual spaces of dimension n. �e

duality pairing of v ∈ TpM with α ∈ T∗
p M is given by directional di�erentiation

α ⋅ v ∶= ( f ○ γ)′(0) where α = [ f ] and v = [γ] .

Proof. Since these computations involve only �rst-derivatives, which are uniquely determined by α
and v, it su�ces to check this formula for any particular representatives for α and v.

Consider a local coordinate chartU ⊂ V = Rn. For simplicity, suppose that the coordinates for p are
0⃗. As usual, let {ei = ∂

∂x i
}n
i=1 denote the standard basis of V , and {εi = dxi}ni=1 the dual basis of V∗.

Under this coordinate chart, any velocity vector v ∈ TpM can be uniquely expressed as v = ∑ viei ,
and any covector can be uniquely expressed as α = ∑ αiεi . �e dual pairing is

α ⋅ v = (∑ αiεi) ⋅ (∑ v je j) = ∑ αivi .

We need to pick representatives [ f ] for α and [γ] for v, and then verify the identity

α ⋅ v ?= ( f ○ γ)′(0).

Set γ = (v1t, v2t, . . . , vnt), and f = α1x1 + ⋯ + αnxn. By construction, it’s clear that γ̇(0) = v, and
d f ∣p = α. We compute that f ○ γ(t) = α1v1t + ⋯ + αnvnt, so that ( f ○ γ)′(0) = ∑ αivi = α ⋅ v, as
desired.

Restoring the coordinate charts

Suppose we have a coordinate chart (U1, h1) around p ∈ M so that h1(p) = 0⃗. Let x1, . . . , xn denote
the local coordinates of h1(U1) ⊂ Rn. Given a function f ∈ C∞(M), the corresponding function
on C∞(h2(U)) is f ○ h−11 (x1, . . . , xn), which is denoted by f1 = (h−11 )∗( f ). Similarly, if (U2, h2) is
another coordinate chart around p, the local representative for f in C∞(h2(U2)) is f2 = (h−12 )∗( f ).
�e transition function from h1(U1 ∩U2) to h2(U1 ∩U2) is

h1(U1 ∩U2)
h21 // h2(U1 ∩U2)

given by
h21 = h2 ○ h−11 .

It relates f1 and f2 via
f2 = (h−121 )∗( f1).
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