Review of Stokes' Theorem with boundary

Suppose M^{n} is oriented, and $\eta \in \Omega_{c}^{n-1}(M)$. Partitions of unity work the same way on manifolds with boundary. Thus we can reduce

$$
\int_{\partial M} i^{*}(\eta)=\int_{M} d \eta
$$

to

$$
\int_{\mathbb{R}^{n-1}} i^{*}(\eta)=\int_{\mathbb{R}_{-}^{n}} d \eta, \quad \eta \in \Omega_{c}^{n-1}\left(\mathbb{R}_{-}^{n}\right)
$$

(Recall that $\partial \mathbb{R}_{-}^{n}=\mathbb{R}^{n-1}$.)
In coordinates, we have $\eta=\sum_{i=1}^{n}(-1)^{i-1} \eta_{i} d x_{1} \wedge \cdots \wedge \widehat{d x}_{i} \wedge \cdots \wedge d x_{n}$.
The support of η is a closed and bounded subset of \mathbb{R}_{-}^{n}, so it is contained in some large half-ball.
The map i^{*} sets $x_{1}=0$, so

$$
i^{*}(\eta)=\eta_{1}\left(0, x_{2}, \ldots, x_{n}\right) d x_{2} \wedge \cdots \wedge d x_{n}+0 .
$$

Computing,

$$
\int_{\mathbb{R}_{-}^{n}} d \eta=\sum_{i=1}^{n} \int_{x_{n}=-\infty}^{\infty} \cdots \int_{x_{2}=-\infty}^{\infty} \int_{x_{1}=-\infty}^{0} \cdots \frac{\partial \eta_{i}}{\partial x_{i}} d x_{1} \cdots d x_{n}
$$

We can reorder the integrals by Fubini's Theorem. We want to integrate x_{i} first:

$$
\int_{a}^{b} \frac{\partial \eta_{i}}{\partial x_{i}} d x_{i}=\left.\eta_{i}\right|_{x_{i}=b}-\left.\eta_{i}\right|_{x_{i}=a} .
$$

By compact support, as $a \rightarrow-\infty$, the hyperplane $x_{i}=a$ moves outside the support, so $\left.\eta_{i}\right|_{x_{i}=a} \equiv 0$. When $i \neq 1$, the same thing happens as $b \rightarrow+\infty$. The only remaining contribution is from the term

$$
\begin{aligned}
\int_{\mathbb{R}_{-}^{n}} d \eta & =\int_{x_{n}=-\infty}^{\infty} \cdots \int_{x_{2}=-\infty}^{\infty}\left[\int_{x_{1}=-\infty}^{0} \frac{\partial \eta_{1}}{\partial x_{1}} d x_{1}\right] d x_{2} \cdots d x_{n} \\
& =\int_{\mathbb{R}^{n-1}}\left(\left.\eta_{1}\right|_{x_{1}=0}-0\right) d x_{2} \cdots d x_{n} \\
& =\int_{\mathbb{R}^{n-1}} i^{*} \eta .
\end{aligned}
$$

Example 1. Fundamental Theorem of Calculus:

$$
M=[a, b], \quad \partial M=\{a\} \sqcup\{b\} .
$$

M is oriented by $d t \in \Omega^{1}([a, b])$. An orientation on ∂M is a nowhere-vanishing element of $\Omega^{0}(\{a\} \sqcup$ $\{b\})$, so it determies a \pm sign for each point. The outward conormal for b is $d t$, while the outward conormal for a is $-d t$. Using the outward-first convention:

$$
\begin{aligned}
d t & =d t \cdot(+1) \Longrightarrow \operatorname{sign}(b)=+1 \\
& =(-d t) \cdot(-1) \Longrightarrow \operatorname{sign}(a)=-1 .
\end{aligned}
$$

Example 2. Cylinders for Problem \#8:
If M is a manifold without boundary $(\partial M=\varnothing)$, and ω_{0} is an orientation form on M, the cylinder of M is $[0,1] \times M$ with orientation form $d t \wedge \omega_{0}$. Then

$$
\partial([0,1] \times M)=(\partial[0,1]) \times M=(\{0\} \sqcup\{1\}) \times M=M_{0} \sqcup M_{1} .
$$

The outward conormal for M_{1} is $d t$, while the outward conormal for M_{0} is $-d t$. Thus

$$
\begin{aligned}
& d t \wedge \omega_{0} \Longrightarrow\left(M_{1},\left[\omega_{0}\right]\right) \\
= & (-d t) \wedge\left(-\omega_{0}\right) \Longrightarrow\left(M_{0},\left[-\omega_{0}\right]\right) .
\end{aligned}
$$

Thus M_{1} is a copy of M, while M_{0} is M with the orientation reversed. We write this as $M_{0}=\bar{M}$ and $M_{1}=M$. Then Stokes' theorem tells us that if $\eta \in \Omega^{n-1}([0,1] \times M)$, then

$$
\int_{[0,1] \times M} d \eta=\int_{M_{0} \sqcup M_{1}} \eta=\int_{\bar{M}} i_{0}^{*}(\eta)+\int_{M} i_{1}^{*}(\eta)=\int_{M} i_{1}^{*}(\eta)-\int_{M} i_{0}^{*}(\eta)
$$

Example 3. Here we use Stokes' Theorem without boundaries. Suppose M^{n} is closed (=compact, without boundary) and oriented. Then $H^{n}(M) \neq 0$.

Proof. Since M is compact, $\Omega^{p}(M)=\Omega_{c}^{p}(M)$. Since M is oriented, there exists an orientation form $\omega \in \Omega_{c}^{n}(M)$ which is a positive multiple of $d x_{1} \wedge \cdots \wedge d x_{n}$ in each coordinate chart. Thus $\int_{M} \omega>0$.
Note that ω is closed automatically since $d \omega \in \Omega^{n+1}(M)=0$. Thus it determines a cohomology class $[\omega] \in H^{n}(M)$. (Warning: previously I have been using the notation $[\omega] \sim[f \omega], f>0$ to denote an orientation. Now I mean cohomology: $[\omega] \sim[\omega+d \eta]$.)
For contradiction, suppose $[\omega]=0 \in H^{n}(M)$. This is equivalent to $\omega=d \eta$ for some $\eta \in \Omega^{n-1}(M)$. Then

$$
0<\int_{M} \omega=\int_{M} d \eta=0 \quad(\text { since } \partial M=\varnothing) .
$$

Theorem 4. Suppose M is compact and oriented. There does not exist a smooth map $f: M \rightarrow \partial M$ which fixes the boundary, i.e. $\left.f\right|_{\partial M}=\mathrm{Id}_{\partial M}$. For example, there is no map from the ball to its boundary sphere which fixes the boundary sphere.

Proof. M oriented $\Longrightarrow \partial M$ oriented. $\partial M \subset M$ closed $\Longrightarrow \partial M$ compact. There exists an orientation form $\omega_{0} \in \Omega^{n-1}(\partial M)=\Omega_{c}^{n-1}(\partial M)$. Using a positive atlas for ω_{0}, the coordinate expressions are positive multiples of $d x_{2} \wedge \cdots \wedge d x_{n}$. Thus

$$
\int_{\partial M} \omega_{0}>0 .
$$

Now we argue by contradiction.

$$
0<\int_{\partial M} \omega_{0}=\int_{\partial M} \operatorname{Id}_{\partial M}^{*}\left(\omega_{0}\right)=\int_{\partial M} f^{*}\left(\omega_{0}\right)=\int_{M} d f^{*}\left(\omega_{0}\right)=\int_{M} f^{*}\left(d \omega_{0}\right)=\int_{M} f^{*}(0)=0,
$$

where we used $d \omega_{0} \in \Omega^{n}(\partial M)=0$ since ∂M only has dimension $n-1$.
How do we make sense of what just happened? I don't know exactly, but here is a paradigm shift which might help.

Doing topology with category theory

We want to think of things categorically. This means by using commutative diagrams and functors.
Definition. A commutative diagram is a diagram where any composition is independent of the path taken.

Example 5. The fundamental property of exterior derivatives $d f^{*}(\omega)=f^{*}(d \omega)$ is encoded by the diagram

Example 6. Stokes' Theorem:

Let's reprove our theorem categorically.

Proof. The hypothesis $\left.f\right|_{\partial M}=\mathrm{Id}_{\partial M}$ can be rephrased as the commutative diagram

$$
\left.f\right|_{\partial M}=\mathrm{Id}_{\partial M} \Longrightarrow \partial M \stackrel{\overbrace{i}^{\mathrm{Id}_{\partial M}} M \xrightarrow{f}}{>} \partial M .
$$

Since M and ∂M are compact, $\Omega_{c}^{p}=\Omega^{p}$. By example of the orientation form on ∂M, we know that the following map is nonzero:

$$
\begin{gathered}
\Omega^{n-1}(\partial M) \\
\mid \int_{\partial M \neq 0} \\
\mathbb{R}
\end{gathered}
$$

The strategy is to assemble everything we know like LEGOs. Stokes':

The upper row suggests applying the functor Ω^{n-1} :

Putting it together:

Building further:

Now we have generated our contradiction:

These types of arguments are the essence of algebraic topology.

