
Intro to cohomology, continued

Last time we saw the notion of an exact sequence, and the particular example:
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�e de�ning property is that the kernel of any linearmap equals the image of the previous. �e rows

of each matrix describe the dependencies among the rows of the previous matrix. �e idea is that

either side
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provides relations de�ning the subspace span
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⊂ R3, and furthermore these resolutions en-

code the meta-relations. We call such a sequence a resolution.

De Rham cohomology arises naturally from resolving the space of locally constant functions.

Whywouldwewant to resolve the space of locally constant functions? It’s useful to be able to analyze

functions locally. For example, with smooth (=in�nitely di�erentiable=C∞) functions, we have the

notion of a partition of unity:

De�nition. Given an open cover {Uα} of a smooth manifold, there exist smooth bump functions
{ϕα} such that

• at every point, there is a neighborhood on which only �nitely many ϕα are nonzero,

• ∑α ϕα = 1, and

• each ϕα ≥ 0 with ϕα > 0 only inside Uα [speci�cally, the support of a function f is de�ned to
be the closure supp( f ) ∶= {x∣ f (x) ≠ 0}, and suppϕα ⊂ Uα].

Such a collection of functions is called a partition of unity.

To analyze a function f , it’s o�en easier to study 1 ⋅ f = ∑α ϕα f , so that each term ϕα f is localized
within Uα. �e problem with a locally constant function f is that ϕα f is no longer locally constant.
�us we are led to resolve locally constant functions in terms of smooth functions.
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We begin on Rn with the tensor algebra, spanned by terms of the form

f dx i1 ⊗⋯⊗ dx ik
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

k factors

∈ Tk(Rn), with f ∈ C∞(Rn).

Denote T●(Rn) ∶= ⊕k∈Z≥0Tk(Rn). Note that T0 = C∞(Rn). �e total derivative ∇ ∶ T●(Rn) →
T●+1(Rn) is the operator

∇ =
n

∑
i=1

∂
∂x i ⊗ .

For example,

∇(x1 dx2 ⊗ dx3) = dx1 ⊗ dx2 ⊗ dx3.

Locally (globally) constant functions are characterized by solutions of ∇ f = 0 for f ∈ T0(Rn). Our
�rst guess for a resolution looks like

T0(Rn) ∇→ T1(Rn) ∇→ T2(Rn) ∇→ ⋯
but this does not satisfy the necessary condition ∇○∇ = 0. By symmetry of partial derivatives, and
polarization,

∇ ○∇ =∑
i, j

∂2
∂x i∂x j dx

i ⊗ dx j⊗

= 12∑
i, j

∂2
∂x i∂x j ((dx

i + dx j) ⊗ (dx i + dx j) − dx i ⊗ dx i − dx j ⊗ dx j) ⊗ .

�us we automatically satisfy the desired condition if we set α ⊗ α = 0 for all α ∈ T1(Rn). �us we
de�ne

Ωk(Rn) ∶= Tk(Rn)/ {α ⊗ α = 0} ,
and with it we use the new notation

⊗ ↦ ∧, ∇ ↦ d ∶=
n

∑
i=1

∂
∂x i ∧,

so that

d2 = 0, α ∧ α = 0, ∀α ∈ Ω1(Rn).
�is is antisymmetric since

0 = (α1 + α2) ∧ (α1 + α2) = α1 ∧ α2 + α2 ∧ α1.

Remark. Under general change of coordinates, the expression for d remains unchanged. However,
changing coordinates for ∇, by the gauge principle, requires a connection. Normally one chooses
the Levi-Civita connection associated with some metric.

Now we have arrived at the guess of a resolution

Ω0(Rn) d→ Ω1(Rn) d→ Ω2(Rn) d→ ⋯ d→ Ωn(Rn) d→ 0 = Ωn+1(Rn).
�e Poincaré lemma is a computation which shows that this sequence is exact. Assuming this, we
have achieved our goal of resolving locally constant functions. In summary, the only solutions over

Rn to dω = 0 are the obvious solutions of the form ω = dη, with the exception of ω equal to some
constant function.
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Manifolds

A topological manifold of dimension n is a set equipped with an n-dimensional atlas, which is Haus-
dor� and second-countable.

An n−dimensional atlas on a set X is a cover {Uα} of X, and charts ϕα ∶ Uα → Vα ⊂ Rn such that

• each Vα ⊂ Rn is open,

• each ϕα is a bijection, and

• each transition function ϕαβ ∶= ϕβ ○ ϕ−1α ∶ Vα → Vβ is a homeomorphism.

Remark. Abstractly, manifolds begin life as a set, and inherit all their properties from their atlas.
For example, subset of a manifold is open if it is open in each chart.

Remark. Given two di�erent atlases on the same set, if their union is still an atlas, then the atlases
are called compatible, and the resulting manifolds are considered equivalent.

De�nition. An manifold is smooth if the transition functions are required instead to be di�eomor-
phisms.

Remark. Functions on smooth manifolds are smooth if they are smooth in each chart.

De�nition. A smooth manifold is oriented if all transition functions ϕαβ are orientation-preserving,
i.e. they satisfy

det( ∂
∂x j ϕ

i
αβ) > 0.

Remark. It’s complicated, but one can extend this de�nition to topological manifolds.

De�nition. Given an oriented manifold X, we de�ne the orientation-reversed manifold X to be the
same smooth manifold, but with each coordinate chart re�ected.

Examples of exotic manifolds

Topological/smoothmanifolds, togetherwith continuous/smoothmaps, forma category. �ismeans
that every manifold has an identity map, and maps can be composed. In any category, there is a no-

tion of isomorphism, which is a map with a two-sided inverse.

De�nition. A continuous map of topological manifolds f ∶ X1 → X2 is a homeomorphism if it is
an isomorphism of topological manifolds, i.e. there exists a continuous f −1 ∶ X2 → X1 such that

f −1 ○ f = IdX1 and f ○ f −1 = IdX2 .

De�nition. A smooth map of smooth manifolds f ∶ X1 → X2 is a di�eomorphism if it is an isomor-
phism of smooth manifolds.
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It’s easy to place multiple smooth structures on the same topological manifold. For example, con-

sider two smooth atlases on the same copy of R, giving two smooth manifolds which we denote
by X1 and X2. On X1 we use the atlas with the single chart ϕ = IdR ∶ R → R. On X2 we use the

single chart ψ ∶ R → R by ψ(x) = x3. Individually, these are each clearly smooth atlases, since
the only transition function is the identity. �ese two atlases are compatible topologically, since

ψ ○ ϕ−1 = x ↦ x3 and ϕ ○ ψ−1 = x ↦ x1/3 are homeomorphisms. �us X1 and X2 are the same

topological manifold. However, they are not smoothly the compatible, since x1/3 is not smooth.

We should not get too excited, since X1 and X2 are di�eomorphic. In particular, the map X1 → X2
given by x ↦ x1/3 is a di�eomorphism. (Remember, smoothness of a map is de�ned in terms of
coordinate charts!)

What we really want to understand is the di�erence between di�eomorphism classes of smoothman-
ifolds, and homeomorphism classes of topological manifolds. Visualizing examples is not easy, due
to the following result:

�eorem (Moise’s�eorem (with others)). Let X be a topological manifold of dimension d ≤ 3. �en
X admits a smooth structure, unique up to di�eomorphism.

�e �rst examples of exotic smooth structures were discovered by Milnor on the 7-sphere S7. �ere
are 28 distinct smooth structures on S7. �ey can be realized explicitly as the manifolds obtained
by the equations

a2 + b2 + c2 + d3 + e6k−1 = 0,
∣a∣2 + ∣b∣2 + ∣c∣2 + ∣d∣2 + ∣e∣2 = ε,

(a, b, c, d , e) ∈ C5,

for ε > 0 small, and k = 1, . . . , 28. Perhaps it is best to view exotic structures as distinct manifolds
which are “accidentally” homeomorphic.
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