
We are trying to prove the Hodge decomposition

Ωp(X) = dΩp−1(X) ⊕ d∗Ωp+1(X)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

image ∆
(but is it all of (ker ∆)⊥?)

⊕Hp(X)
´¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¶
ker ∆

into three orthogonal pieces. Note that assuming the Hodge decomposition,

ker d = (image d∗)⊥ = dΩp−1(X) ⊕Hp(X),

so
Hp(X) ≅↪ ker d/image d = Hp(X;R).

Gauge theory is essentially a nonlinear generalization of Hodge theory. When we linearize the ASD
equations and the Seiberg-Witten equations, the analysis will be very similar.

At the end of last lecture, we applied Rellich’s theorem to show thatHp(X) is �nite-dimensional. It
follows that it is a closed subspace (in the relative L2 topology, or any other reasonable topology).
To ensure that our decomposition is not missing any pieces, we must also show that if α ⊥ ker ∆,
then α ∈ image ∆. In other words, we must solve the PDE

∆ω = α

for ω ∈ Ωp(X) given α ∈ Hp(X)⊥ ⊂ Ωp(X).

Lemma 1 (Rellich’s �eorem). Let X be a closed oriented manifold. Suppose {ωi ∈ Ωp(X)}∞i=1 is a
sequence such that ∥ωi∥L2 and ∥∆ωi∥L2 are both bounded. �en ωi contains a Cauchy subsequence,
which converges in the L2-completion of Ωp(X), i.e.

ωi
L2→ ω ∈ L2(X; Λp(T∗X)).

(Passage to a subsequence is implicit.)

Lemma 2 (Regularity). Suppose ω ∈ L2(X; Λp(T∗X)) is a “weak solution” to “∆ω = α” in the below
sense, with α ∈ Ωp(X). �en ω ∈ Ωp(X), i.e. ω is not just L2 but is smooth.

Suppose we have ω, α ∈ L2(X; Λp(T∗X)) which satisfy the equation “∆ω = α.” Since ∆ω doesn’t
make sense for ω ∈ L2, we have to make sense of this in “weak form:”

∆ω = α ⇐⇒ ∀β ∈ Ωp(X), ⟨β, ∆ω⟩ = ⟨β, α⟩ ⇐⇒ ∀β ∈ Ωp(X), ⟨∆β,ω⟩ = ⟨β, α⟩ .

�is last equation nowmakes sense because the Laplacian hits the smooth di�erential form, instead
of the L2 di�erential form.

Philisophically, the “weak form” corresponds to viewing ∆ω as a distribution, i.e. a continuous func-
tional on the space of smooth forms Ωp(X) → R. Any di�erential p-form α with L2 coe�cients
determines a unique functional ℓα by

ℓα ∶ Ωp(X) → R,
ℓα(β) ∶= ⟨α, β⟩ .
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For any di�erential operator D with smooth coe�cients, we want to make sense of Dα, even when
α is not di�erentiable. Assuming that boundary terms vanish (i.e. X is closed), then we expect
“ℓDα(β) = ⟨Dα, β⟩ = ⟨α,D∗β⟩ = ℓα(D∗β)” so we take as de�nition

ℓDα(β) ∶= ℓα(D∗β), ∀β ∈ Ωp(X),

which always makes sense because β is smooth. In fact, this de�nition makes sense as a derivative
ℓDγ for any functional ℓγ ∶ Ωp(X) → R, even when ℓγ does not arise from some continuous γ. �us
we are led to the dual space Ωp(X)∗ of distributional forms. (�ere is a natural topology on Ωp(X)
for which distributions are implicitly required to be continuous.) We identify L2 forms as a subspace
of Ωp(X)∗ via α ↦ ℓα, and we know how to extend the action of di�erential operators with smooth
coe�cients from Ωp(X) to Ωp(X)∗.

Now suppose α ∈ Hp(X)⊥. To solve our PDE ∆ω = α, we de�ne a (possibly unbounded) linear
functional

ℓ∆−1α ∶ (image ∆ ⊂ Ωp(X)) → R,
ℓ∆−1α(∆β) = ⟨β, α⟩ .

We must check that this is well-de�ned, independent of our choice of β. But �rst note that as a
distribution, ℓ∆−1α formally corresponds to an inverse image under the Laplacian for α: “ℓ∆−1α(γ) =
⟨γ, ∆−1α⟩,” since if γ = ∆β, then formally, “ℓ∆−1α(∆β) = ⟨∆β, ∆−1α⟩ = ⟨β, ∆∆−1α⟩ = ⟨β, α⟩.”

Observe that ℓ∆−1α is well-de�ned, since if ∆β1 = ∆β2, then ∆(β1 − β2) = 0 so β1 − β2 ∈ Hp(X), thus
⟨β1, α⟩ = ⟨β2, α⟩ since α ∈ Hp(X)⊥.

Lemma 3. �e functional ℓ∆−1α ∶ (image ∆) → R, is L2-bounded, i.e.

∣ℓ∆−1α(γ)∣ ≤ Cα ∥γ∥L2

for some Cα which is independent of γ.

Assuming this lemma, then by the Hahn-Banach theorem, ℓ∆−1α extends to a bounded linear func-
tional ℓ̃∆−1α ∶ L2(X; ΛpT∗X) → R. By theRiesz representation theorem, there is someω ∈ L2(X; ΛpT∗X)
such that ℓ̃∆−1α(γ) = ⟨ω, γ⟩. �is ω then satis�es “∆ω = α” weakly, since

⟨∆ω, γ⟩ ∶= ⟨ω, ∆γ⟩ = ℓ̃∆−1α(∆γ) = ℓ∆−1α(∆γ) = ⟨α, γ⟩ .

Since we assumed α ∈ Ωp(X), by Lemma 2 we conclude that ω ∈ Ωp(X). �us ∆ω = α, and we are
done.

To prove Lemma 3, we will need

Lemma 4 (Poincaré inequality). Let X be a closed oriented manifold. �ere is a constant CX such
that

∥β∥L2 ≤ CX ∥∆β∥L2 ∀β ∈ Hp(X)⊥.
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Proof of Lemma 4. By contradiction, supppose not. �en there is some sequence βi ∈ Hp(X)⊥
with ∥βi∥L2 = 1 and ∥∆βi∥L2 → 0. By Lemma 1, passing to a subsequence, βi → β for some
β ∈ L2(X; ΛpT∗X) ∩ Hp(X)⊥. Furthermore, “∆β = 0” since for any �xed α ∈ Ωp(X), “⟨∆β, α⟩”=
⟨β, ∆α⟩ = 0, since

∣⟨β, ∆α⟩∣ = ∣⟨lim
i

βi , ∆α⟩∣ = lim
i
∣⟨∆βi , α⟩∣ ≤ ∥α∥L2 limi ∥∆βi∥L2 → 0.

By Lemma 2, since 0 ∈ Ωp(X) we have β ∈ Ωp(X) ⊂ L2(X; ΛpT∗X) ∩Hp(X)⊥ and satis�es ∆β = 0,
so β ∈ Hp(X)⊥ ∩Hp(X), thus β = 0. But ∥β∥L2 = lim ∥βi∥L2 = 1, which is a contradiction.

Proof of Lemma 3. By contradiction, suppose not. �en there is some sequence {γi ∈ image ∆}with
∥γi∥L2 = 1 but ℓ∆−1α(γi) → ∞. Choose γi = ∆βi . Since Hp(X) is �nite-dimensional, we can
assume βi ∈ Hp(X)⊥ a�er subtracting the appropriate �nite linear combination. �en ⟨βi , α⟩ =
ℓ∆−1α(∆βi) = ℓ∆−1α(γi) → ∞ while ∥∆βi∥L2 = 1. By Lemma 4, ∥βi∥L2 ≤ CX . �us by Lemma 1,
a�er passing to a subsequence, βi → β ∈ L2(X; ΛpT∗X), so ⟨βi , α⟩ → ⟨β, α⟩ = �nite, which is a
contradiction.

Up to the proofs of Lemma 1 and Lemma 2 we have proved the Hodge decomposition.
At this point, we can de�ne the Green’s operator G ∶ Ωp(X) → (Hp(X))⊥ ⊂ Ωp(X)) by de�ning
G(α) ∶= ω to be the unique solution to ∆ω = α − πHp(α). It’s a simple exercise to show that G is
a bounded linear self-adjoint operator which commutes with d, d∗, and ∆. Since G is bounded, it
extends to the L2 completion

G ∶ L2(X; ΛpT∗X) → (Hp(X))⊥ ⊂ L2(X; ΛpT∗X)),
and satis�es

∆G = IdL2(X;ΛpT∗X) − πHp ,
G∆ = IdΩp − πHp .

De�nition. A linear operator between Banach or Hilbert spaces is compact if the image of any
bounded sequence has a convergent subsequence.

A simple consequence of the Rellich lemma is that the Green’s operator G is compact. �e spectral
theorem for compact self-adjoint operators then yields an eigenspace decomposition of L2(X; ΛpT∗X)
into �nite-dimensional eigenspaces of G with eigenvalues µi which accumulate only to zero. Since
∆ is inverse to G on the complement of Hp(X), ∆ has the same eigenspace decomposition, with
eigenvalues λi = 1/µi . Moreover, the eigenvalues λi of ∆ can accumulate only towards in�nity.

Elliptic operators

�e prototypical elliptic operator over a closed manifold is the Laplacian ∆ = −∑n
i=1 ∂2i over the

n-torusRn/(2πiZn), acting on smooth functions ∆ ∶ Ω0(Tn) → Ω0(Tn). �is case is worth under-
standing completely, because it very concretely exhibits the properties of elliptic operators. More
generally we have the Hodge Laplacian, Dirac operator, and more general elliptic operators.
�e main theorems are

3



�eorem. If X is a closed manifold, and P is an elliptic di�erential operator, then kerP is �nite-
dimensional, P∗ is also elliptic, and image P = (kerP∗)⊥.

�eorem. If X is a closed manifold, and P is an elliptic di�erential operator of degree d, then for each
s ∈ R, there exists a constant CP,s such that

∥ω∥Hs+d ≤ CP,s ∥Pω∥Hs ∀ω ∈ Hs+d , ω ⊥ kerP,
∥ω∥Hs+d ≤ CP,s (∥Pω∥Hs + ∥ω∥Hs) ∀ω ∈ Hs+d ,

where the Hs denotes the Sobolev spaces of distributions with s derivatives in L2.
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