We are trying to prove the Hodge decomposition

QP(X) = dOP (X)) & d* QP (X) @ HP (X)
—

image A ker A
(but is it all of (ker A)*?)

into three orthogonal pieces. Note that assuming the Hodge decomposition,
kerd = (image d*)* = dQP (X)) ® H?(X),

SO

HP(X) < kerd/image d = H? (X;R).

Gauge theory is essentially a nonlinear generalization of Hodge theory. When we linearize the ASD
equations and the Seiberg-Witten equations, the analysis will be very similar.

At the end of last lecture, we applied Rellich’s theorem to show that #?(X) is finite-dimensional. It
follows that it is a closed subspace (in the relative L? topology, or any other reasonable topology).
To ensure that our decomposition is not missing any pieces, we must also show that if & 1 ker A,
then « € image A. In other words, we must solve the PDE

Aw =«
for w € QP (X) given o € HP (X)* c QP (X).

Lemma 1 (Rellich’s Theorem). Let X be a closed oriented manifold. Suppose {w; € Q?(X)};-, is a
sequence such that |w; |, and |Aw;| . are both bounded. Then w; contains a Cauchy subsequence,
which converges in the L?-completion of QP (X), i.e.

w; 5> we (X AP(T'X)).
(Passage to a subsequence is implicit.)
Lemma 2 (Regularity). Suppose w € L>(X; AP(T*X)) is a “weak solution” to “Aw = a” in the below

sense, with a € QP(X). Then w € OP(X), i.e. w is not just L? but is smooth.

Suppose we have w, a € L?2(X; A?(T*X)) which satisfy the equation “Aw = «” Since Aw doesn’t
make sense for w € L2, we have to make sense of this in “weak form:”

Aw=a < Ve QF(X), (f,Aw) = (B,a) < VB ec QP (X), (AB,w)=(B,a).

This last equation now makes sense because the Laplacian hits the smooth differential form, instead
of the L? differential form.

Philisophically, the “weak form” corresponds to viewing Aw as a distribution, i.e. a continuous func-
tional on the space of smooth forms Qf(X) — R. Any differential p-form a with L? coefficients
determines a unique functional ¢, by

t,: QP (X) > R,
goc(ﬁ) = <“’ﬁ>-



For any differential operator D with smooth coefficients, we want to make sense of Da, even when
« is not differentiable. Assuming that boundary terms vanish (i.e. X is closed), then we expect
“pa(B) = (Da, B) = (a, D*B) = £,(D*B)” so we take as definition

tpa(pB) = a(D"B), ¥ € QP (X),

which always makes sense because 8 is smooth. In fact, this definition makes sense as a derivative
¢p, for any functional ¢, : Q?(X) — R, even when ¢, does not arise from some continuous y. Thus
we are led to the dual space Q?(X)* of distributional forms. (There is a natural topology on Q7 (X)
for which distributions are implicitly required to be continuous.) We identify L? forms as a subspace
of QP(X)* via a — £,, and we know how to extend the action of differential operators with smooth
coefficients from Qf (X) to QF(X)*.

Now suppose a € HP(X)*. To solve our PDE Aw = «, we define a (possibly unbounded) linear
functional

fp-14 ¢ (image A c QF (X)) - R,
Ca1a(AB) = (B ).

We must check that this is well-defined, independent of our choice of . But first note that as a
distribution, £,-1, formally corresponds to an inverse image under the Laplacian for a: “€5-1,(y) =

(y, A7), since if y = AB, then formally, “Cx-1,(AB) = (AB, A la) = (B, AA a) = (B, a)”

Observe that £,-1, is well-defined, since if AB; = AB,, then A(B; - 8,) = 0s0 B, — B, € HP(X), thus
(B1,a) = (B2, &) since a € HP(X)*.

Lemma 3. The functional £5-1, : (image A) — R, is L2-bounded, i.e.

[ea1a(P)l < Ca |yl

for some C, which is independent of .

Assuming this lemma, then by the Hahn-Banach theorem, €5-1, extends to a bounded linear func-
tional £5-1, : L2(X; APT*X) — R. By the Riesz representation theorem, thereis some w € L?(X; AP T*X)
such that €5-1,(y) = (w, y). This w then satisfies “Aw = a” weakly, since

(Aw,y) = (@, Ay) = a-1a(Ay) = La-1a(Ay) = (o, 7).

Since we assumed « € Qf(X), by Lemma 2 we conclude that w € Q?(X). Thus Aw = «, and we are
done.

To prove Lemma 3, we will need

Lemma 4 (Poincaré inequality). Let X be a closed oriented manifold. There is a constant Cx such
that

1Bl < Cx | AB] 2 VB e HP(X)"



Proof of Lemma 4. By contradiction, supppose not. Then there is some sequence f3; € H?(X)*
with |Bi . = 1 and |AB;|;> - 0. By Lemma 1, passing to a subsequence, f; — f for some
B e L2(X;APT*X) nHP(X)*L. Furthermore, “Af3 = 0” since for any fixed a € Q?(X), “(Af, a)”=
(B, Aa) = 0, since

(8. 80| = [(1m 1, Aa)| = tim (8, o)l < . lim [ 42 .
By Lemma 2, since 0 € Q?(X) we have f € O?(X) c L2(X; APT*X) nHP(X)* and satisfies AS = 0,
so f e HP(X)* nHP(X), thus f = 0. But ||B] . =lim|B;],. = 1, which is a contradiction. O

Proof of Lemma 3. By contradiction, suppose not. Then there is some sequence {y; € image A} with
lyilllz = 1 but €p-14(y;) = oo. Choose y; = AB;. Since H?(X) is finite-dimensional, we can
assume f3; € HP(X)* after subtracting the appropriate finite linear combination. Then (f;, ) =
Ca-14(AB;) = €p-14(yi) — oo while |AB;]|;» = 1. By Lemma 4, |B;],. < Cx. Thus by Lemma 1,
after passing to a subsequence, f8; - f € L2(X; A?T*X), so (Bi,a) — (f,«) = finite, which is a
contradiction. O]

Up to the proofs of Lemma 1 and Lemma 2 we have proved the Hodge decomposition.

At this point, we can define the Green’s operator G : QP(X) — (HP(X))* c QP(X)) by defining
G(«) := w to be the unique solution to Aw = «a — 73, (). It’s a simple exercise to show that G is
a bounded linear self-adjoint operator which commutes with d, d*, and A. Since G is bounded, it
extends to the L? completion

G L2(X APT*X) — (HP(X))* < L2(X; APT*X)),
and satisfies
AG = IdLZ(X;APT*X) — TTyp,
GA =1dgr — 3.

Definition. A linear operator between Banach or Hilbert spaces is compact if the image of any
bounded sequence has a convergent subsequence.

A simple consequence of the Rellich lemma is that the Green’s operator G is compact. The spectral
theorem for compact self-adjoint operators then yields an eigenspace decomposition of L?(X; AP T* X))
into finite-dimensional eigenspaces of G with eigenvalues y; which accumulate only to zero. Since
A is inverse to G on the complement of H?(X), A has the same eigenspace decomposition, with
eigenvalues A; = 1/u;. Moreover, the eigenvalues A; of A can accumulate only towards infinity.

Elliptic operators

The prototypical elliptic operator over a closed manifold is the Laplacian A = - Y7, 0% over the
n-torus R"/(2miZ"), acting on smooth functions A : Q%(T") - QO°(T"). This case is worth under-
standing completely, because it very concretely exhibits the properties of elliptic operators. More
generally we have the Hodge Laplacian, Dirac operator, and more general elliptic operators.

The main theorems are



Theorem. If X is a closed manifold, and P is an elliptic differential operator, then ker P is finite-
dimensional, P* is also elliptic, and image P = (ker P*)*.

Theorem. If X is a closed manifold, and P is an elliptic differential operator of degree d, then for each
s € R, there exists a constant Cp s such that

||w||H5+d < CP,s ”Pw”Hs Ywe Hs+d, w 1| kerP,

|@lggesa < Cos (IP@l gy + |@]pgs) Yo € B,

where the H* denotes the Sobolev spaces of distributions with s derivatives in L2



