
We begin with a brief overview of the main ideas, mainly intended to expose beginners to new

language.�is will be followedwithmore context and background, which should bemore accessible

to non-experts.

By default, allmanifolds are assumed to be closed (i.e. compact andwithout boundary) andoriented.

Donaldson Theory

In four dimensions, there are in�nite families of smooth manifolds which are homeomorphic, but

not di�eomorphic.

Xi
di�eo
/∼ X j Xi
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While the topology is the same, the notion of calculus is di�erent. �us to distinguish such man-
ifolds, it makes sense to study solutions to di�erential equations. Gauge theory provides speci�c

di�erential equations which are su�ciently natural and simple for this purpose.

�e most basic di�erential equation from gauge theory is the Yang-Mills equation
dA ⋆ FA = 0,

which is a second-order PDE for a connection A. Here A is a connection on a principle bundle P. In
the simplest case where the gauge group of P is U(1), A is physically the electromagnetic potential,
and FA ∶= dA is the electromagnetic �eld. We will be interested in the next simplest case, where
the gauge group is SU(2), and A is the gauge �eld corresponding to the weak force. �e �eld is
FA ∶= dA+ 12 [A∧ A].
In either case, the Yang-Mills equation arises as the Euler-Lagrange equation for stationary points

of the Yang-Mills energy

LYM = ∫X ∣FA∣2 dvol.

In physics it is common to decompose the electromagnetic �eld into orthonormal electric andmag-

netic parts, which depend on a space-time basis ∣FA∣2 = ∣E∣2+∣B∣2. In four dimensionswith Euclidean
signature, there is an orthonormal splitting FA = F+A + F−A which is basis-independent.�is leads to
the anti-self-dual Yang-Mills equation or instanton equation

F+A = 0,

which is �rst-order in A.
�e decomposition satis�es

∫X (∣F−A ∣
2
− ∫X ∣F+A ∣

2
) dvol = Ctop,

where Ctop is a constant depending on the topology of the principal bundle. Consequently,

LYM = ∫X (∣F+A ∣
2
+ ∣F−A ∣

2
) = Ctop + ∫X 2 ∣F+A ∣2 .

Connections satisfying this equation are absoluteminimizers of LYM, and thus also satisfy the second-

order Yang-Mills equation.

For any �xed bundle P, the space of connectionsAP is an a�ne linear space, which is rather boring.

However, the gauge group

GP ∶= Aut(P)
1
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acts onAP, and the quotient space of physical states

BP ∶= AP/GP

has interesting topology.

Informally speaking, the equation F+A = 0 cuts out a �nite-dimensional oriented submanifold

MASD ⊂ BP .

�us it de�nes a homology class

[MASD] ⊂ Hd(BP),

where

d = dimMASD.

(Disclaimer: in reality, the situation is much more complicated due to technical issues, but I’m de-

scribing the general idea.) We can produce numbers by evaluating this on cohomology classes in

Hd(BP).�is gives us the Donaldson invariants, which o�en detect smooth structures.

Note: �e equations, and thus the resulting moduli space, depend on a choice of Riemannian
metric on X. �e Donaldson invariants are constructed in such a way that they are (usu-
ally) independent of this choice. Instead, they depend only on the underlying di�erential-

topological structure on X.
Warning: �ese invariants are o�en called topological invariants. However, they are not well-
de�ned in the sense of point-set topology! Instead, they are di�erential-topological invari-
ants.

Accomplishments of this theory include:

● Large classes of topological four-manifolds which admit no smooth structure

● Examples of “exotic” topological four-manifolds which admit multiple smooth structures,

including R4

● Invariants which are sometimes capable of distinguishing smooth structures

Kevin Iga [1] nicely summarizes the development of gauge theory as a tool in four-dimensional

di�erential topology:

1983: Donaldson’s�eorem on intersection form, and Donaldson invariants
1988: Witten’s connection withN = 2 SUSY [Beyond scope of this course]

1994: Seiberg-Witten theory

In 1983, Donaldson shocked the topology world by using instantons from physics

to prove new theorems about four-dimensional manifolds, and he developed new

topological invariants. In 1988, Witten showed how these invariants could be ob-

tained by correlation functions for a twisted N = 2 SUSY gauge theory. In 1994,

Seiberg and Witten discovered dualities for such theories, and in particular, devel-

oped a new way of looking at four-dimensional manifolds that turns out to be easier,

and is conjectured to be equivalent to, Donaldson theory.

Seiberg-Witten invariants follow the same scheme but with di�erent equations:

F+A = q(ϕ),
/∂Aϕ = 0,
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where ϕ is a spinor, q is a quadratic map (unique up to a constant), and A is a U(1) connection (or

electromagnetic potential). While this equation is conceptually more complicated due to the cou-

pling with the spinor, the technicalities are vastly simpler. Seiberg-Witten invariants are conjectured

to encode the same information as Donaldson invariants, and this conjecture has been rigorously

established in most cases.

Since Donaldson theory was mostly replaced by Seiberg-Witten theory, one might question why I

should present it. Not only is it historically interesting, but the past few years have seen a resurgence

in Donaldson theory.

By assuming a few identities, right now I can prove some powerful theorems using Seiberg-Witten

theory.

De�ne the Seiberg-Witten energy

LSW(A, ϕ) ∶= ∫X (∣/∂Aϕ∣
2
+ ∣F+A − q(ϕ)∣2) dvol.

�en LSW(A, ϕ) ≥ 0, with equality exactly when the Seiberg-Witten equations are satis�ed. Expand-
ing,

LSW(A, ϕ) = ∫X (∣/∂Aϕ∣
2
+ ∣F+A ∣

2
+ ∣q(ϕ)∣2 − 2 ⟨F+A , q(ϕ)⟩) dvol.

�ere’s an identity fromdi�erential geometry called the Lichnerowicz–Weitzenböck formula, which

states that

0 = ∫X (∣∇Aϕ∣2 − ∣ /∂Aϕ∣
2
+ 14s ∣ϕ∣

2
+ 2 ⟨F+A , q(ϕ)⟩) dvol,

where the function s is scalar curvature. Taking this as given, and adding it to LSW(A, ϕ), we get

LSW(A, ϕ) = ∫X (∣∇Aϕ∣2 + 14s ∣ϕ∣
2
+ ∣F+A ∣

2
+ ∣q(ϕ)∣2) dvol.

Another useful identity is ∣q(ϕ)∣2 = 18 ∣ϕ∣
4
.

LSW(A, ϕ) = ∫X (∣∇Aϕ∣2 + ∣F+A ∣
2
+ 14s ∣ϕ∣

2
+ ∣ϕ∣4) dvol.

Note that if s ≥ 0 everywhere, then the only way this integral can be zero is if ϕ ≡ 0. In most

generic cases, it is impossible to have solutions with ϕ ≡ 0.�us, if s ≥ 0, then all the Seiberg-Witten
invariants vanish.

Recall that ∫X ∣F+A ∣
2
= −12Ctop + 12 ∫X ∣FA∣2 .�us

LSW(A, ϕ) = −12Ctop + ∫X (∣∇Aϕ∣2 + ∣FA∣2 + 14s ∣ϕ∣
2
+ 18 ∣ϕ∣

4
) dvol.

Completing the square,

LSW(A, ϕ) = ∫X (∣∇Aϕ∣2 + ∣FA∣2 + 18 (∣ϕ∣
2
− (−s))

2
) dvol − (12Ctop + 18 ∫X s2) .

�is is an extremely powerful form of the energy. In particular, we have the identity

(12Ctop + 18 ∫X s2) ≤ ∫X (∣∇Aϕ∣2 + ∣FA∣2 + 18 (∣ϕ∣
2
− (−s))

2
) ,
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with equality i� (A, ϕ) is a solution. Fixing the topology and geometry, the le�-hand side becomes
a constant, independent of (A, ϕ).�e right hand side is the sum of three positive terms.�us for
any solution, we have the following bounds:

∫X ∣∇Aϕ∣2 , ∫X ∣FA∣2 , ∫X 18 (∣ϕ∣
2
− (−s))

2
≤ C ,

where

C ∶= (12Ctop + 18 ∫X s2) .
We can �nd a bound on ∫ ∣ϕ∣4 as follows. For dealing with cross-terms, it’s useful to have the in-
equality

∣xy∣ = 12 (εx2 + ε−1y2 − ε−1(ε ∣x∣ − ∣y∣)2) ≤ 12 (εx2 + ε−1y2) .
Undoing the completion of the square,

∫X (∣ϕ∣4 + 2s ∣ϕ∣2) ≤ 4Ctop.

�us

∫X ((1 − ε) ∣ϕ∣4 − ε−1s2) ≤ 4Ctop,

∫X ∣ϕ∣4 ≤
4Ctop + ε−1 ∫X s2

1 − ε
.

Setting ε = 12 yields

∫X ∣ϕ∣4 ≤ 8Ctop + 4 ∫X s2.
It’s possible to choose ε more cleverly, but it’s rarely worth the e�ort.
A�er some simple Sobolev theory, this readily implies compactness of the moduli space.

�e minimal genus problem asks: given an integral homology class of degree two inside a smooth
four-manifold, what is the minimal genus of a smoothly embedded Riemann surface Σ which rep-

resents it? Some simpler homology classes might be representable by smoothly embedded spheres

or tori, while more complicated classes may require surfaces of higher genus.

In the case when our four-manifold is a complex manifold and Σ is a complex submanifold, the

genus g(Σ) is determined by the adjunction formula
2 g(Σ) − 2 = ⟨K , [Σ]⟩ + [Σ] ⋅ [Σ] .

For example on CP2
, K = −3 [H], [Σ] = d [H], and [H] ⋅ [H] = 1, where d is the degree of Σ.�is

yields the classical formula g(Σ) = 12(d−1)(d−2).�e�om conjecture asserts that insideCP2
, the

genus does not decrease if we allow smooth (but non-algebraic) Σ. Kronheimer andMrowka solved

the�om conjecture by discovering a simple Seiberg-Witten proof. �eir idea yields a beautiful

extension of the adjunction formula to an adjunction inequality for non-algebraic manifolds, where
the Seiberg-Witten invariants produce lower bounds for g(Σ).
Seiberg-Witten invariants depend on a choice of something called a Spinc-structure s, and SW(s) ∈
Z. For each s there is an associated Chern class c1(s) ∈ H2(X;Z).

Suppose X is a smooth oriented closed 4-manifold with b+2 > 1. Suppose Σ is an embedded surface
of genus g with Σ ⋅ Σ ≥ 0. Suppose κ is a Seiberg-Witten basic class for X. If Σ is not torsion and
g ≥ 1, then

2g − 2 ≥ ∣κ ⋅ Σ∣ + Σ ⋅ Σ
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.

�e idea of the proof is quite nice. Suppose that [Σ] ⋅ [Σ] = 0. (If [Σ] ⋅ [Σ] > 0 then we can reduce

to this case by a blowup argument.) �is means that the normal bundle of Σ is trivial, so that Σ

contains a tubular neighborhood of the form Σ × D2 ↪ X. Inside of D2 we can �nd an annulus

S1 × [0, 1]. Inside this annulus is a smaller disk D̃2. We can decompose X into three pieces: the
annulus, and the two complementary pieces on either side:

X = X′ ∪ (Σ × S1 × [0, 1]) ∪ (Σ × D̃2) ,

where X′ ∶= X/(Σ × D2). Under the assumption that the Seiberg-Witten invariant is nonzero, we

are guaranteed at least one solution to the Seiberg-Witten equations for any choice of Riemannian
metric. We �x a nice metric on Σ × S1, and use the product metric on the “neck” Σ × S1 × [0, L],
parameterized by the length L. We extend to �xed metrics on X′ and (Σ × D̃2). By sending L →∞,

the behavior of the solution along the neck becomes dominant.

By the Gauss-Bonnet theorem, Riemannian scalar curvature along the neck is proportional to the

Euler characteristic χ(Σ):

∥scal∥
2
L2 ∼ L χ(Σ)2.

Using identities of Riemannian geometry, the Lagrangian for the Seiberg-Witten equations can be

rewritten so that the spinor is coupled with the Riemannian scalar curvature. �is leads to the

inequality

∥F+A∥L2
SW
= ∥(ϕ ⊗ ϕ∗)0∥L2 ≤ 8

−1/2 ∥scal∥L2 .

Finally,

∥F+A∥
2
L2 ∼ 12 ∥FA∥

2
L2 ∼ L ⋅ C2,

where C is proportional to a topological number ∣⟨c1(s), [Σ]⟩∣.

In conclusion,

−
√
Lχ(Σ) ∼ ∥scal∥L2 ≳ ∥F+A∥

2
L2 ∼

√
LC .

More precisely, we get an inequality of the type

−
√
Lχ(Σ) ≥

√
L ∣⟨c1(s), [Σ]⟩∣ + some constant independent of L.

Sending L →∞ and being more careful with constants of proportionality, we obtain

−χ(Σ) = 2 g(Σ) − 2 ≥ ∣⟨c1(s), [Σ]⟩∣ .

In the more general case [Σ] ⋅ [Σ] ≥ 0, the blowup argument produces

2 g(Σ) − 2 ≥ ∣⟨c1(s), [Σ]⟩∣ + [Σ] ⋅ [Σ] ,

which is the celebrated adjunction inequality. It remains to explain the objects involved in this proof,

and also to establish the analytic estimates which make this argument rigorous.

�e plan for the remainder of this course is to �ll in most details of everything discussed so far.
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Intro to cohomology

�e simplest di�erential invariants of smooth manifolds come from de Rham cohomology. Before

discussing classi�cation of manifolds, it makes sense to understand cohomology so that we have a

useful tool.

In some sense, cohomology is the study of locally constant functions. Real-valued locally constant

functions on a manifold form a vector space of dimension equal to the number of connected com-

ponents. �is may seem like the end of the story, but surprisingly it’s not. For further analysis, we

will need some linear/homological algebra.

Consider a vector subspace W ⊂ V . �ere are two primary ways to describe W . We can view it
either by a parameterization:

W = image(V ′ → V).

or by de�ning equations:

W = ker(V → V ′′).

It is useful to switch between these viewpoints. For instance, the line in R3 given by

span/image
⎛
⎜
⎝

1

2

−3

⎞
⎟
⎠
∶ R1 → R3

is equivalent to

nullspace/ker
⎛
⎜
⎝

1 1 1

2 −1 0

0 3 2

⎞
⎟
⎠
∶ R3 → R3.

Each row represents the intersection of a plane. In general we would expect three planes to inter-

sect in a point, but the rows are linearly dependent. �e condition that the line is cut out by the

hyperplanes is that

ker
⎛
⎜
⎝

1 1 1

2 −1 0

0 3 2

⎞
⎟
⎠
= image

⎛
⎜
⎝

1

2

−3

⎞
⎟
⎠
.

�e inclusion image ⊂ ker is the condition that the composition of the two maps gives zero:

⎛
⎜
⎝

1 1 1

2 −1 0

0 3 2

⎞
⎟
⎠

⎛
⎜
⎝

1

2

−3

⎞
⎟
⎠
=
⎛
⎜
⎝

0

0

0

⎞
⎟
⎠
.

�e opposite inclusion ker ⊂ image is the statement that

⎛
⎜
⎝

1 1 1

2 −1 0

0 3 2

⎞
⎟
⎠
v⃗ = 0 Ô⇒ v⃗ =

⎛
⎜
⎝

1

2

−3

⎞
⎟
⎠

˜⃗v .

Next we should describe the defect in the 3 × 3 matrix.�e relation among the rows is given by the

matrix

( −2 1 1 ) .
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Because there is no further defect, we stop. What we now have is a sequence of linear maps

⋯→ R0 Ð→ R1

⎛
⎜⎜⎜⎜
⎝

1

2

−3

⎞
⎟⎟⎟⎟
⎠

Ð→ R3

⎛
⎜⎜⎜⎜
⎝

1 1 1

2 −1 0

0 3 2

⎞
⎟⎟⎟⎟
⎠

Ð→ R3
( −2 1 1 )

Ð→ R1 Ð→ R0 Ð→ R0 → ⋯

where the kernel of any linear map corresponds to the image of the previous.�is is called an exact
sequence.�e idea is that either side

⋯→ R0 Ð→ R1

⎛
⎜⎜⎜⎜
⎝

1

2

−3

⎞
⎟⎟⎟⎟
⎠

Ð→ R3

or

R3

⎛
⎜⎜⎜⎜
⎝

1 1 1

2 −1 0

0 3 2

⎞
⎟⎟⎟⎟
⎠

Ð→ R3
( −2 1 1 )

Ð→ R1 Ð→ R0 Ð→ R0 → ⋯

provides relations de�ning the subspace of R3, and furthermore encodes the meta-relations. We

call such a sequence a resolution.
De Rham cohomology arises naturally from resolving the space of locally constant functions.

To be continued...
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