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Abstract

These notes are based on my lecture courses given at SISSA for first-year graduate students
during Winter 2013 and Winter 2015. The aim is to give a gentle introduction to gauge theory
applied to four-dimensional topology. The emphasis is on the interplay between functional
analysis and topology.
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Chapter 1

Introduction

1.1 About these notes

These notes cover the following three subjects related to mathematical gauge theory applied to
four-dimensional topology.

Background and context Before students can fully comprehend the proofs, they must first learn
some formidable technical machinery. Additionally, appreciation of the theorems requires
context. These notes aim to provide context while introducing the most crucial parts of the
technical machinery.

Donaldson theory This is the study of SU(2) and SO(3) anti-self-dual instantons. Conceptually it is
fairly simple, but the technicalities are extremely difficult. The functional analysis required to
tackle these difficulties will be introduced but not fully developed.

Seiberg-Witten theory This is the theory of a U(1) gauge field coupled to a spinor. Conceptually it
is more complicated, but since the technicalities are vastly simpler, a more thorough treatment
will be given.

Historically, topological field theory (in the form of supersymmetric path integrals) was instrumental
to the discovery of Seiberg-Witten theory, but sadly this aspect is beyond the scope of these notes.
Nor will we discuss the very fruitful algebraic geometric approach to Donaldson theory (semistable
sheaves).

Since Donaldson theory has since been mostly replaced by Seiberg-Witten theory, one might question
why it should be presented. Not only is it historically interesting, but since Seiberg-Witten theory
has been the primary focus of research for the past two decades, Donaldson theory now seems to be
coming back into fashion.

In order to make these notes accessible to those with less rigorous mathematical backgrounds, some
elementary topics are mentioned. For topics which are already well-covered by the existing literature,
these notes summarize the most important aspects, often from a particular perspective. Be warned
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Figure 1.1: Every closed oriented two-dimensional manifold is determined up to diffeomorphism by
its genus g(2), which counts the number of handles.

that in order to emphasize certain intuitions, some definitions may be left incomplete, given only by
example. However, such definitions are readily found in the references, and often in Wikipedia.

Notation and conventions are outlined in Section

1.2 A brief survey

Kevin Iga [Iga02] nicely summarizes the development of gauge theory as a tool in four-dimensional
differential topology:

In 1983, Donaldson shocked the topology world by using instantons from physics to
prove new theorems about four-dimensional manifolds, and he developed new topo-
logical invariants. In 1988, Witten showed how these invariants could be obtained by
correlation functions for a twisted ./* = 2 SUSY gauge theory. In 1994, Seiberg and
Witten discovered dualities for such theories, and in particular, developed a new way of
looking at four-dimensional manifolds that turns out to be easier, and is conjectured to
be equivalent to, Donaldson theory.

In conjunction with the results of Freedman and Taubes, Donaldson theory provided:

« Large classes of topological four-manifolds which admit no smooth structure

« Examples of “exotic” topological four-manifolds which admit multiple smooth structures,
including R*

o Invariants which are sometimes capable of distinguishing smooth structures

Due to technical obstacles, the proofs from Donaldson theory were quite cumbersome. Upon the
discovery of Seiberg-Witten theory, four-dimensional differential topology was revitalized with
simpler proofs, simpler invariants, and new theorems. When the four-manifold is symplectic, Taubes
proved that the Seiberg-Witten invariant corresponds to a certain count of pseudo-holomorphic
curves (with respect to a generic almost-complex structure). In this case, the definition is very similar
to that of the Gromov-Witten invarijant.

One particular application of gauge theory I plan to focus on was one of the first major triumphs
of Seiberg-Witten theory. Recall the classical result that the topology of any close connected

! A manifold is said to be closed when it is compact and has empty boundary.
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Figure 1.2: It is always possible to increase the genus of an embedded curve within a homology class
adding the boundary of a small solid torus. Here the genus increases from three to four.

oriented two-dimensional manifold X is determined by its genus, as in Figure The minimal
genus problem asks: for a given smooth four-manifold X and a connected oriented two-dimensional
submanifold X, when is it possible to reduce the genus of £ without changing the topological class of
% in the homology H,(X; Z)$ Some simpler homology classes might be representable by smoothly
embedded spheres or tori, while more complicated classes may require surfaces of higher genus.

In the case when our four-manifold X is a complex manifold and £ — X is holomorphically
embedded, the genus g(X) is exactly determined by the adjunction formula

29(2) -2 =K([Z]) + [Z] - [Z].

Here g(%) is the genus, K is the canonical class and [X] - [X] is the self-intersection number For
example on CP?, consider the surface X defined as the zero set of a generic homogeneous polynomial
of degree d > 0. Then [X] = d [H], where the hyperplane class [H] generates H,(X; Z). Since two
lines intersect in a point, [H] - [H] = 1. The canonical class is K(d [H]) = —3d. Solving for g(X)
yields the classical formula g(X) = %(d - D(d -2).

One interesting consequence of the adjunction formula is that it's impossible to holomorphically
increase the genus as in Figure

Since smooth (but non-holomorphic) curves X can have genus greater than predicted by the ad-
junction formula, it’s natural to wonder whether or not there are smooth curves of lower genus.
For specific four-manifolds X, some specific results were known using geometric techniques. More
partial results were achieved using difficult techniques from Donaldson theory.

The Thom conjecture asserts that inside CP%, any smooth surface X with [X] = d [H] ford > 0
satisfies the adjunction inequality g(X) > %(d —1)(d — 2). Kronheimer and Mrowka solved the Thom
conjecture by discovering a simple proof based on Seiberg-Witten theory [KM94]]. Their idea yields
a beautiful extension of the adjunction formula to an adjunction inequality for any four-manifold
with some nonvanishing Seiberg-Witten invariant.

An even simpler proof of the adjunction inequality appears in [KMO07, §40], which proves the main
assertion by simple estimates using the Seiberg-Witten action (L.5). Indeed, by assuming some simple
properties of Seiberg-Witten invariants and some identities, a proof is presented already in Section

2Roughly speaking, an element of H,(X; Z) is like a closed, oriented, two-dimensional submanifold up to bordism
within X. See Chapterfor more details.

3For our purposes, the canonical class is just some particular linear function H*(X; Z) — Z.

“The self-intersection number is described in Section
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1.3 Overview of Donaldson theory

In four dimensions, there are infinite families of smooth manifolds which are homeomorphic, but
not diffeomorphic.
diffeo homeo
X; # Xj X; = Xj
While the topology is the same, the notion of calculus is difterent. Thus to distinguish such manifolds,
it makes sense to study solutions to differential equations. Gauge theory provides specific differential
equations which are sufficiently natural and simple for this purpose.

The most basic differential equation from gauge theory is the Yang-Mills equation (L). It is a second-
order PDE for a connection, which is denoted by A. In physics, a connection is called a gauge potential.
The curvature of the connection is denoted by F,, which physicists call the gauge field. Suppose X is
any smooth manifold equipped with a metric g. The Yang-Mills equation is

dA * Fq =0, (1-1)

where * is the Hodge star operator associated to the metric g, and dy is the exterior covariant deriva-
tive. All these concepts will be explained thoroughly in Section|1.8] All notations are summarized in
Section

The manifold X corresponds physically to the space or spacetime. Geometrically, connections live in
something called a principal bundle, which is a type of fiber bundle P — X whose fibers are a fixed
compact Lie group G.

When the manifold X is Minkowski space, and when G = U(1), the group of unit complex numbers,
the connection A can be identified with a one-form on X, which physically corresponds to the
electromagnetic potential. The curvature F4 = dA is the electromagnetic field. The Yang-Mills
equation is equivalent to Maxwell’s equations (with no charge or current). It describes the propogation
of electromagnetic waves.

Our primary focus will be the next simplest case, where the gauge group is SU(2), so that A is a gauge
potential corresponding physically to the weak force. Locally, A is represented by a one-form on X
with values in the Lie algebra su(2). The curvature of A (gauge field) is defined locally by

Fa=dA+3[ANA].

For our purposes, X will be a closed oriented Riemannian manifold. In contrast with the wave-type
equation which arises on Minkowski space, the Yang-Mills equation with a positive-definite metric
corresponds to a Laplace-type equation which describe statics.

In either case, the Yang-Mills equation arises as the Euler-Lagrange equation for stationary points of
the Yang-Mills action functional

Sym(A) 5:/|FA|2-
X

>On first glance, the expression [A A A] looks like it must vanish. The Lie bracket is antisymmetric, and the wedge
product of differential forms of odd-degree is also antisymmetric. However, the tensor product of two antisymmetric
bilinear maps is a symmetric bilinear map, and there can be nonzero cross-terms. For instance, if A = a; ® & + a2 ® &3,
then [A A A] =20 A ap ® [&1, 6.



In physics it is common to decompose the electromagnetic field into orthonormal electric and
magnetic parts |Fa|* = |E|* + | B|?, which depend on a choice of orthonormal basis for the spacetime.
In contrast, when the metric is positive-definite, there is an orthonormal splitting F4 = F; + F,
which is basis-independent. This leads to the anti-self-dual Yang-Mills equation or instanton equation

Ff =0, (1.2)
which is first-order in A.
The decomposition satisfies
) L2
X
where Ciop is a constant depending only on the topology of the principal bundle P. Consequently,
+12 _12 42
Sym(A) = (|FA| + |FA( ) = Ciop+ [ 2 |FA| . (1.4)
X X

From (1.4) we conclude that Syp(A) > Ciop since the integral on the right hand side is nonnegative.

2
Furthermore, Syp = Ciop is equivalent to fX |F;{| = 0, which implies that FX is identically zero.
Thus all solutions to (1.2) are absolute minimizers of Sym, hence stationary points, and thus also
satisty the second-order Yang-Mills equation (L.I)).

For any fixed bundle P, the space of connections &/p is an affine linear space, which is rather boring.
However, the gauge group

gp = Aut(P)
acts on &/p, and the quotient space of physical states
%p = P / ?p

has interesting topology.

Informally speaking, the equation F; = 0 cuts out a finite-dimensional oriented submanifold
M asp C Bp.

Thus it defines a homology class
[Masp] € Ha(Sp),

where
d=dim A/ ASD-

In reality, the situation is much more complicated due to technical issues, however this is the guiding
idea. We can produce numbers by evaluating this on cohomology classes in H?(%p). This gives us
the Donaldson invariants, which often detect smooth structures.

Note The ASD equation depends on the choice of Riemannian metric on X, which determines
the decomposition Fy = F;{ + F} . Thus the moduli space .#Zxsp also depends on the metric.
However, the Donaldson invariants are constructed in such a way that they are (usually)
independent of this choice. Thus they depend only on the underlying smooth structure on X.

Warning These invariants are often called topological invariants. However, they are not well-defined
in the sense of point-set topology! Instead, they are differential-topological invariants.



1.4 Overview of Seiberg-Witten theory

Seiberg-Witten invariants follow the same scheme but with different equations:

Fy =q(¢),
dag =0,
where ¢ is a spinor, g is a quadratic map (unique up to a constant), and A is a U(1) connection (or
electromagnetic potential). While this equation is conceptually more complicated due to the coupling
with the spinor, the technicalities are vastly simpler. Seiberg-Witten invariants are conjectured to

encode the same information as Donaldson invariants, and this conjecture has been rigorously
established in most cases.

Since Donaldson theory was mostly replaced by Seiberg-Witten theory, one might question why I
should present it. Not only is it historically interesting, but the past few years have seen a resurgence
in Donaldson theory.

By assuming a few identities, right now I can prove some powerful theorems using Seiberg-Witten
theory.

Define the Seiberg-Witten action

Sowiag)i= [ (gl + |5 - q@)). 15)

Then Ssw(A4, ¢) > 0, with equality exactly when the Seiberg-Witten equations are satisfied. Expand-
ing,

Sow(d.0) = [ (1020 + 3]+ la@F - 2(85.99)).

There’s an identity from differential geometry called the Lichnerowicz—-Weitzenbock formula, which
states that

0= [ (I7agf - a9 + dsclgf +2(F1.a(9))).
where the function Sc is scalar curvature. Taking this as given, and adding it to Lgw(A, ¢), we get
Ssw(A, §) = /X (|VA¢|2 +1sclgl + |Ef] + |q(¢)|2) :
Another useful identity is |g(¢)|* = % lo|*.
SwAg) = [ (1Vagl + 5[ + dclof + o).
Note that if Sc > 0 everywhere, then the only way this integral can be zero is if ¢ = 0. In most generic

cases, it is impossible to have solutions with ¢ = 0. Thus, if Sc > 0, then all the Seiberg-Witten
invariants must vanish.

Recall from that [, |FX'2 = —1Cwp + 1 [ |Fal*. Thus
Ssw(A, ¢) = —=3Ciop + / (|VA¢’|2 + 1 [Fal* + Sc|o|* + & |¢|4) :
X

10



Completing the square,

Sswi(A, ¢) = /); (|VA(/)|2 + % |FA|2 + % (|(/)|2 - (_SC))Z) -C,

c:(g%p+§/58)
X

This is an extremely powerful form of the action. Note that C depends only on the topology of the
bundle and the geometry of X. The rest of the action is the sum of positive terms. It follows that for

any solution,
2
/IVA¢2, %/ |Fal?, %/ (I6]* - (=8))" < C.
X X X

In a certain sense, V¢ and F4 cannot be too large, and |¢| cannot be too far from V—Sc. With some
simple Sobolev theory, these bounds imply compactness of the moduli space.

where

Seiberg-Witten invariants depend on a choice of something called a Spin‘-structure. Ofterﬁ a Spin‘-
structure s is determined by its Chern class ¢;(s) € H 2(X;2). Assuming a mild topological condition
on X (that b*(X) > 1), then there is a map SW : Spin°(X) — Z which gives a signed count of
solutions to the Seiberg-Witten equations.

Definition. For a smooth oriented closed 4-manifold X with b*(X) > 1, a Seiberg-Witten basic class is
a cohomology class k € H*(X; Z) such that there is a Spin‘-structure s with SW(s) # 0 and ¢;(5) = .

If x is a Seiberg-Witten basic class, then for any metric on X, there must exist solutions to the
Seiberg-Witten equations associated to «.

Theorem 1 (Adjunction inequality). Suppose X is a smooth oriented closed 4-manifold with b* (X) > 1
and a Seiberg-Witten basic class k. If £ is an embedded surface of genus g > 1 with [Z] - [£] > 0, then

29-22> k- [Z]| + [Z] - [X].

The idea of the proof is quite nice. If [Z] - [£] > 0, then we can reduce to the case of [£] - [Z] = 0
Assuming for now that [X] - [X] = 0, we wish to prove

29 -2 > [k, [Z])].

Since X and ¥ are oriented, the normal bundle to X is oriented. Rank two oriented vector bundles
are classified up to isomorphism by their Euler class. Since the Euler class of the normal bundle is
[Z] - [¥] = 0, the normal bundle of £ must be trivial. Thus X contains a tubular neighborhood of the
form T x D? — X. Inside of D? we can find an annulus S' x [0, 1]. Inside this annulus is a smaller
disk D?. We can decompose X into three pieces: the annulus, and the two complementary pieces on
either side:

X:X%42x§xmﬂ)u@xbﬂ,

Swhen H?(X; Z) has no 2-torsion

11



where X’ := X\(Z x D?). Under the assumption that the Seiberg-Witten invariant is nonzero, we
are guaranteed at least one solution to the Seiberg-Witten equations for any choice of Riemannian
metric. Along the neck N := ¥ X S! X [0, 1] we choose a product metric where S! has length 1, [0, 1]
has length given by a parameter L, and £ has area 1 and constant sectional curvature 277(2 — 2g). Such
a choice of metric on X is possible by uniformization and Gauss-Bonet. On the complement N° of N,
we fix some arbitrary metric. We will see that by sending L — oo, the behavior of the solution along
the neck becomes dominant.

Ssw(A, ¢) > —%Ctop+§/x(|FA|2— (180)?)

> —%Ctop—g/ 52+§/ (IFal* = (380)?%).
N¢ N

The scalar curvature counts the sectional curvature twice, so (%SC)2 =2r2 - 2g))2 along N.

Note that F, is a cohomology representative of —2mic;(x). It follows that if ig ; denotes the inclusion

Y — X x {0} x {t}, then fz iy Fa = —=2mi(x - Z). Since i,  is a restriction which projects out
' ’ 2

components not parallel to Z, it follows that (27 (x - [2]))* < (fo{O}x{t} IFA|) < fZX{@}x{t} |Eal%.

Thus

Sswi(A, ¢) > (—%ctop -1 /N C 52) +32m)? (k- [£1)* - (29 - 2)°) L.
If (A, ¢) is a solution, then Ssw (A, ¢) = 0, so
0> -C+3@n)?((x-[Z])* - (29-2?%) L, VL.

Since L can be made arbitrarily large, (x - X)* — (29 — 2)* < 0. Since g > 1, we have 2g — 2 > 0, and
thus taking square roots,
|k -Z| <2-2g.

Now for the blowup argument. Suppose [X] - [Z] > 0. Let X = X#CP?, 5 = S#E, and & = « + [E],
where E = §? = CP! G;PZ is the exceptional curve. There is a “blowup formula” which implies
that « is a basic class for X. We have [E] - [E] = —1and [E] - [£] = 0, and {«x, [E]) = 0. Thus

2] - [E] = (=1 + [ED) - (2] + [ED) = [2] - [2] - L,
and i
(% [2])] = (e 2 [E] [Z] + [ED] = K. [Z]) F 1] = K, [Z])] +1
upon choosing the appropriate sign. Thus

G, (2D1+ 121 [2] = [(& [E])] + [£] - [£].

The genus of 3 is the same as that of 2. Thus by blowing up, we have replaced the adjunction inequality

with an equivalent inequality where [i] . [i] is reduced by one. Iterating, we reduce to [i] . [i] =0.
See [Law97] for more details, for instance the case g = 0.

12



1.5 Recommended references

For an easy-to-read panoramic view of the field, the best reference is certainly [Sco05]]. It covers
background, Donaldson theory, Seiberg-Witten theory, has several images, many nice geometric
proofs, and plenty of useful references. However, the leisurely style comes at the cost of omitting
analysis.

One of my favorite references for the basic theory of manifolds and differential forms from a geometric
and physical perspective is [Fral2]. A much more sophisticated book which develops homological
algebra and cohomology from the perspective of differential forms is [BT82]]. Another introductory
text which develops sheaf theory and Hodge theory is [War83].

For Donaldson theory, there are not many good references at the introductory level. Two of the best
introductory textbooks are [FU91] and [Law85]. There are also the lecture notes [Mor98], together
with more advanced topics in the same volume. Another important reference is [DK90] which
presents a mixture of introductory and advanced topics. Advanced references include [FM94],

For Seiberg-Witten theory, there are many easy introductory references... [Mor96] [Sal] [Tau98]
[Mar99]] [Moo01] For spinors, [LM89]

1.6 Euclidean vs Lorentzian
1.7 Transversality
1.8 Principal bundles

1.9 Manifolds

Definition 2. A topological manifold of dimension n is a set equipped with an n-dimensional atlas,
which is Hausdorft and second-countable.

An n—dimensional atlas on a set X is a cover {U,} of X, and charts ¢, : Uy, — V, € R" such that

o each V, c R" is open,
o each ¢, is a bijection, and
« each transition function ¢4g := ¢g o ¢,' : Vo — Vj is a homeomorphism.

Remark 3. Abstractly, manifolds begin life as a set, and inherit all their properties from their atlas.
For example, subset of a manifold is open if it is open in each chart.

Remark. Given two different atlases on the same set, if their union is still an atlas, then the atlases
are called compatible, and the resulting manifolds are considered equivalent.

13



Definition 4. An manifold is smooth if the transition functions are required instead to be diffeomor-
phisms.

Remark. Functions on smooth manifolds are smooth if they are smooth in each chart.

Definition 5. A smooth manifold is orientable if all transition functions ¢, can be chosen to be
orientation-preserving, i.e. they satisty

0 i
det (@‘p(xﬁ) > 0.

Remark 6. It’s complicated, but one can extend this definition to topological manifolds.

Definition 7. Given an oriented manifold X, we define the orientation-reversed manifold X to be the
same smooth manifold, but with the opposite orientation.

Complex conjugation on CP” reverses orientation only for n odd.

1.10 Examples of exotic manifolds

Topological/smooth manifolds, together with continuous/smooth maps, form a category. This means
that every manifold has an identity map, and maps can be composed. In any category, there is a
notion of isomorphism, which is a map with a two-sided inverse.

Definition 8. A continuous map of topological manifolds f : X; — X, is a homeomorphism if it is
an isomorphism of topological manifolds, i.e. there exists a continuous f™! : X, — X; such that

f‘1 of =1Idx, and f Of_l = Idy,.

Definition 9. A smooth map of smooth manifolds f : X; — X is a diffeomorphism if it is an
isomorphism of smooth manifolds.

It’s easy to place multiple smooth structures on the same topological manifold. For example, consider
two smooth atlases on the same copy of R, giving two smooth manifolds which we denote by X; and
X5. On X; we use the atlas with the single chart ¢ = Idg : R — R. On X, we use the single chart
v : R = Rbyw(x) = x*. Individually, these are each clearly smooth atlases, since the only transition
function is the identity. These two atlases are compatible topologically, since o ¢! = x > x>
and ¢ o ! = x > x!/3 are homeomorphisms. Thus X; and X; are the same topological manifold.
However, they are not smoothly the compatible, since x'/* is not smooth.

We should not get too excited, since X; and X; are diffeomorphic. In particular, the map X; — X;
given by x > x'/3 is a diffeomorphism. (Remember, smoothness of a map is defined in terms of
coordinate charts!)

What we really want to understand is the difference between diffeomorphism classes of smooth
manifolds, and homeomorphism classes of topological manifolds. Visualizing examples is not easy,
due to the following result:

14



Theorem 10 (Moise’s Theorem (with others)). Let X be a topological manifold of dimension d < 3.
Then X admits a smooth structure, unique up to diffeomorphism.

The first examples of exotic smooth structures were discovered by Milnor on the 7-sphere S’. There

are 28 distinct smooth structures on S”. They can be realized explicitly as the manifolds obtained by
the equations

A+ b+ P +d+ e =0,
lal® + b1 + [c* + |d* + |e]* = &,

(a,b,c,d,e) € C°,

for e > 0 small, and k = 1,...,28. Perhaps it is best to view exotic structures as distinct manifolds
which are “accidentally” homeomorphic.

15



Chapter 2

Classification of manifolds

Now let’s examine classification of manifolds. In dimensions three and below, homeomorphims
classes and diffeomorphism classes agree, so we sloppily refer to “isomorphism” of manifolds to
avoid the distinction.

We might as well start in dimension zero, where a manifold is by definition a (countable) collection
of discrete points. Any manifold is a disjoint union of its connected components, so it makes sense
to study only connected manifolds. The only connected 0-manifold is a point.

Connected 1-manifolds are diffeomorphic to either R or S'. This is a good point to mention the
notion of a manifold with boundary.

Definition 11. A manifold with boundary is a manifold which is locally isomorphic to “relatively
open” subsets of the closed half-plane {3? € R"x! > O}. Points of the manifold corresponding in
some (any) chart to points with x! = 0 are called boundary points.

Remark. A profound statement which somewhat underlies the foundation of homology theory is
this: given a manifold with boundary, its boundary is a manifold without boundary. Symbolically,
8% = 0, where 9 is the operator which takes a manifold and gives its boundary. The relation d* = 0 is
the dual statement under Stokes’ theorem.

There are a total of four connected 1-manifolds with boundary.

’ \ compact \ noncompact ‘

empty boundary s (0,1)
nonempty boundary [0,1] [0,1)

(Note that (0,1] = [0, o) by the diffeomorphism x — x™ - x.)

In dimension 2 (surfaces) can be quite nasty in general. (Consider for example R? — cantor set.) The
situation becomes much nicer if we restrict to compact manifolds. Compact surfaces with boundary
must have boundary which is compact with empty boundary, i.e. finitely many copies of S'. For
simplicity, we consider only surfaces without boundary.

For example, we have $2, the torus T? = T, as well as our first examples of non-orientable surfaces
$2/antipodal = RP? = P, and the Klein bottle K.
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Using the operation of connected sum, we can form a composite surface from two new ones. This
induces an abelian monoid (=group without inverse axiom) structure on isomorphism classes of
surfaces. We obtain the relations

$2#X = X, VX,
P#P = K,
P#P#P = K#P = T#P.

Remark. S? is the identity of the monoid.

Remark. These generators and relations are complete, i.e. the resulting monoid is isomorphic to the
monoid of isomorphism classes of connected compact surfaces.

Remark. The monoid is generated by T and P (the second relation eliminates K). Given a word in T
and P, if P appears, then by the last relation we can trade T for P2,

Thus the isomorphism classes correspond to the orientable surfaces
I, = T*9, g=0, (ZO = Sz)

plus the non-orientable surfaces
Pk k>o.

From here, we would want to show two things:

« every compact connected 2-manifold is isomorphic to one of these examples, and

o these examples are distinct.

There are various ways to prove the first statement, but they all tend to be fairly combinatorial, so
they are of little interest to us. Furthermore, the corresponding statement in four dimensions is
hopeless, since there is no conjectured enumeration of four-manifolds.

The second statement is far more interesting for our purposes.

Definition 12. Forp = 0,. .., n, the p-th Betti number of a manifold X is b”(X) := dim HP(X).
The Betti numbers satisfty many nice properties:

+ b%(X) = #components. Thus if X is connected, then b°(X) = 1.
o (Poincaré duality) If X is an oriented compact n-manifold, then b = b"?.

o If X is a connected compact n-manifold, then

b(X) = {1 if Xis orientable,

0 if Xis non-orientable.
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When all the Betti numbers are finite, it’s possible to define the Euler characteristic y = b°—b'+b*—- - - .
This has some especially nice properties which make it very easy to compute. From any long exact
sequence

- — HY(Z) - H’(X) » HP(Y) - HI (Z) - HPPY(X) —» -,

it follows that y(Y) = x(X) + x(Z). For instance, from the Mayer-Vietoris sequence, if A and B are
open, then
x(A) + x(B) = x(AN B) + x(AU B).

If there is a finite-dimensional chain complex €*(X) which computes the cohomology of X, then
x(€* (X)) = x(X). For example, based on a triangulation, simplicial cohomology gives y(X) =
V — E + F for any triangulated surface with V vertices, E edges, and F faces.

Also, for an unbranched # : 1 covering X" — X where X has a finite triangulation, y(X’) = ny(X).

One easily computes that
xPFy =2k, x(=Zy)=2-2g

From the properties of Betti numbers and this Euler characteristic computation, it follows that for
the connected compact surfaces,

V(P =1, vz, =1,
b2(P**) = o, b (Zy) =1,
b'(P*) = k-1, b'(z,) = 2g.

In particular, {bl, b2} form a complete set of invariants, equivalent to {orientability(X), x(X)}.

Assuming the classification, we observe that the pair consisting of {orientability(X), y(X)} is a
complete invariant, meaning that two manifolds are isomorphic iff they have the same such invariants.

Every nonorientable manifold X has an orientable double-cover. Consider the real line bundle
A"T*X, and remove the zero section A"T*X — 0. An orientation corresponds to a section. To convert
this to a double-cover, we want to collapse the two rays of each fiber to points. The fiber over x
can be identified with (A"T;X — {0})/R,, where R, denotes the multiplicative group of positive
numbers. If X were oriented, then this cover would have a section, and thus the double-cover would
be two disjoint copies of X. Instead, in the nonorientable case, the double-cover is connected. In
two dimensions, the double-cover is 3;_; — P*X. The Euler characteristic is multiplicative under
covering spaces, so we verify y(Z¢_;) = 2y(P*).

If X is non-orientable with orientable double-cover X’ — X, then the involution ¢ : X’ — X’ which
swaps the fibers is fixed-point-free and orientation-reversing. Furthermore, any such involution on
an orientable manifold determines a non-orientable manifold X’/o.

Since a non-orientable manifold is equivalent to an orientable manifold with an involution, we now
focus on only on the orientable case.

In our case of oriented surfaces, note that b' is always even. We can explain this via a slight refinement
of Poincaré duality.

Recall that H3, (X) is a skew-commutative graded ring, meaning that for a € HgR(X ), b€ quR(X ),
a—b=(-11b— aeH 1(X).
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We get the following refinement of Poincaré duality:

Theorem 13. If X is a compact, oriented, connected n-manifold, then for each p, the cup product is a
nondegenerate bilinear map

P n=p ~
HE(X) x HiP(X) = Hip(X) = R.

Specifically, if we use the natural identification of Hj,

map

(X) with R, then the cup product induces a

HL(X) = (Hy 00)

a (b—a-—beR).

Definition 14. A bilinear map is nondegenerate when this map is an isomorphism.

Our previous notion of Poincaré duality follows from
b = dim HA, (X) = dim (HyP (X)) ="

This enhanced version of Poincaré duality also detects certain intrinsic constraints on the cup product
structure of H*(X). For example, if n/2 is an odd integer, i.e. n = 2, 6,10, . . ., then the cup product

HP2(X) x Hil2(X) - R

is antisymmetric! Choosing any basis of Hgl/f(X ), we obtain a nondegenerate antisymmetric matrix.

Thus the eigenvalues are nonzero, purely imaginary, and come in conjugate pairs, so bgl/f(X ) is even.
Using the antisymmetric version of Graham-Schmidt, it is possible to choose a “symplectic basis”
such that the matrix takes the form

The operation of connected sum amounts to a direct sum (block diagonal composition) on the level
of intersection forms. The intersection form of T is

(V5

so the intersection form of T,=T#---#T1is
[ —




In this way, the structure of Z; is reflected in its cohomology.

If n/2 is an even integer, i.e. n = 4, 8,12,. . ., then
2 2
HP2(X) x Hi(X) > R
is symmetric, so the eigenvalues are real and nonzero. We can choose a basis so that the matrix is

1

-1

and we get two new invariants b* (X) = #positive eigenvalues and b~ (X) = #negative eigenvalues
which satisfy b* + b~ = b%. The combination ¢(X) = b*(X) — b~(X) is called the signature.

Remark. Technically, it's wrong to talk about the eigenvalues of a bilinear form, since a bilinear form
is not an endomorphism. The transformation law is different. (Under a change of basis, the matrix
of a bilinear form transforms as Q — G’ QG, while an endomorphism transforms as L + G~'LG.)
The actual eigenvalues depend on the choice of basis, but the number of positive eigenvalues of any
matrix representing a bilinear form gives the maximal dimension of any positive-definite subspace.

A more sophisticated way of stating the chirality proof is that the intersection form is an invariant
of oriented diffeomorphism. Orientation reversal flips the sign of the intersection form. Since the

intersection forms (+1) of CP? and (—1) of CP? are inequivalent as bilinear forms, CP? and CP?
cannot be oriented-diffeomorphic.

More generally, if X is smooth, compact, oriented, and dimension »n with n/2 is even, then the
intersection form Q is symmetric, and

V*(X)odd = 0(X) 20 < Q+ -Q = X chiral.
(Remarkably, the <= in the middle also holds true over the integers.)

Gauge theory is sensitive to orientation. The moduli spaces for CP? and CP? look completely
different. Thus we will consider them distinct oriented manifolds.

If we use integer cohomology, then we get even more structure. The cup product induces an isomor-
phism of Z-modules

HP(X;27) H"?(X;2)\"
torsion ( torsion ) '
If n is even, then choosing a basis,
H'"*(X;Z) _ b2
torsion
The dual basis gives

Hl’l/Z(X; Z) * - (an/Z)* ~ Zbn/Z
torsion B '
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Thus the matrix Q corresponding cup product is a square matrix of length b"/? with integer entries
which is invertible over the integers. An integer bilinear form which is invertible over the integers is
called unimodular.

In terms of the basis, the cup product v — w corresponding to vectors vand w is v Qw. If v = Gy,
T
then Q — (G'l) QG™! to preserve

(Gv)" ((G‘I)T QG‘I) (Gw) = v/ Qw.

In contrast, an endomorphism L transforms as L — GLG™.

Remark. An integer matrix is invertible over the integers iff the determinant is +1. This can be
seen explicitly via the formula A7l = adj(A)/ det A, where adj(A) is the transpose of the cofactor
matrix (no division). It is natural to denote such matrices by GL(n; Z), but not in this particular
context. Here it is more natural to interpret the “invertibility” as the condition that the duality map

H"*(X;7) — (H”/Z(X; Z))* is an isomorphism of Z-modules.
If n/2 is even, then Q is symmetric, and if /2 is odd then Q is antisymmetric.
Unimodular antisymmetric bilinear forms are boring. They are just

-1

Classification of unimodular symmetric bilinear forms is a rich number-theoretic subject.

Theorem 15 (Freedman’s classification of topological four-manifolds). Every equivalence class of
integral unimodular (det = +1) symmetric bilinear form corresponds to either 1 or 2 homeomorphism
classes of simply connected compact topological 4-manifolds. (It corresponds to 1 such homeomorphism
class iff the diagonal entries of the matrix are all even.) For any given form, at most one homeomorphism
class can admit smooth structures.

The simplest matrices are Qgp2 = (+1), Q@ = (-1), and Qq24g2 = ( (1) (1) )

Much more interesting is the Eg Cartan matrix

2 -1 0 0 0 0 0 O
-1 2 -1 0 0 0 0 O
o -1 2 -1 0 0 O O
o 0 -1 2 -1 0 O O
0o 0 0 -1 2 -1 0 -1f
o o o0 o0 -1 2 -1 0
o 0 0 0 0 -1 2 O

o 0 0 0 -1 0 0 2

This is symmetric, unimodular, and positive-definite, yet it is not equivalent to a diagonal matrix!
This is easy to see since it’s even.
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2.1 Functorial view of classification

In dimension 2, we saw that cohomological classification coincides with topological classification
(which also corresponds to smooth classification).

As we move into dimension 3, although smooth and topological classifications still coincide, we will
encounter other levels of classification which do not. Namely,

smooth oriented C smooth C topological ¢ homotopy C cohomology.
For example, the Poincare homology 3-sphere SO(3)/1, where I is the icosahedral group of order 60
has the same integral cohomology as $*, but is not homotopy equivalent to it.

To be specific, there are functors between categories, where all manifolds are assumed to be closed
and connected

orientation-preserving diffeomorphisms smooth maps

smooth manifolds, . topological manifolds,
smooth maps continuous maps

{ oriented smooth manifolds } . { smooth manifolds, }

topological manifolds, . topological manifolds,
continuous maps homotopy classes of continuous maps

topological manifolds, . graded-commutative rings,
homotopy classes of continuous maps degree-preserving homomorphisms

Functors are morphisms of categories. They send objects of one category to objects of another, and
similarly for morphisms. They preserve identity morphisms and composition. The main consequence
is that functors preserve isomorphisms. Suppose X; and X, are isomorphic in some category €, i.e.
thereare f : X; —» X, andg: X, — Xjsuchthatgo f =Idx, and f o g = Idy,. Suppose F : € — 9
is a functor, so that Y] = F(X;) and Y, = F(X3). Then there are morphisms F(f) : ¥; — Y, and
F(g) : Y, = Yy sothat F(g) o F(f) = F(go f) = F(Idyx,) = Idy,, and similarly F(f) o F(g) = Idy,.
Thus isomorphic objects will remain isomorphic under a functor. But non-isomorphic objects might
become isomorphic in the image of a functor.

Functors take isomorphisms to isomorphisms, and isomorphism classes to isomorphism classes.
The induced maps on isomorphism classes need not be injective or surjective. For example, upon

forgetting orientation, [sz] and [CIPZ] both map to the same [CPZ]. In two dimensions, [Zg]

maps to [Zg] , but nothing maps to [T#k ] :

2.2 Notions of chirality

Chirality is the study of lack of orientation reversal. An excellent overview of the subject is presented
in the thesis [Mul08]]. Many details and generalizations can be found therein.
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We can extend our diagram from last time:

. . . . . : positively
orientation-preserving orientation-preserving
. . = . homotopy
diffeomorphic homeomorphic .
equivalent
U U U
: : . homoto isomorphic
diffeomorphic = homeomorphic = 1OPY P
equivalent cohomology

and all these equivalences are induced by functors.

It can happen that a manifold is smoothly chiral, but topologically achiral (admitting an orientation-
reversing homeomorphism but not diffeomorphism). Several exotic spheres provide examples.
Oriented exotic n-spheres form an abelian monoid (group without inverses) under connected sum.
When n > 4, there is an inverse is given by orientation reversal, making it an abelian group ®,,.

| n[1]2]3]4]5]6] 7 [8 ]9 |10 11 [2]1BB3]14] 15 [16]17]
(€, [0[0]0[?[0]0[Zx]|2 [Z[ 2|25 |0[2:[2,|Zonn©2,[2:] 2, |

It is unknown whether exotic S* exist.

Fix some n > 4 so that ®, is a group. For each a € ®,, fix some manifold X, representing a so that

diff — diff
up to oriented diffeomorphism, X, ~ Xy, & a=be0®,,and X, ~ X_,. I claim that X, is
smoothly achiral iff 2a = 0.

diff — diff
X, ~ X, &= X, éX_a & a=-a & 2a=0.
For example, for the exotic 7-spheres group Z»s, only Xy and Xj4 are achiral, and the remaining 26
are chiral.

h _
On the other hand, up to homeomorphism, each X, is homeomorphic to §”, and §" 2% $7, s0 all
exotic spheres are homeomorphically achiral.

2.3 Fundamental group

Consider a manifold X with a specified point xy € X. Define m (X, x¢) to be the set of homotopy
classes of parameterized loops starting and ending at xo, where any homotopy is also required to fix
the endpoints at xo. It’s routine to check that m;(X, xo) is a group, where composition corresponds to
concatenation of loops, and reversal of a path gives its inverse. When X is connected, m (X, xo) and
m(X, x1) are isomorphic with an isomorphism induced from choice of a path connecting xj to x;.
However, the isomorphism depends on the homotopy class of such a path. The group m (X, x¢) is
called the fundamental group of X, and it is a homotopy invariant of X. (A homotopy equivalence of
manifolds induces an isomorphism of fundamental groups.)

If X is connected and m (X, x9) = 0, then X is said to be simply connected. For example, $” is simply
connected for n > 2.
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In principle, this would be a good time to discuss covering spaces, but in the interest of time, we will
skip them for now. Most manifolds we consider will be simply connected anyway. Instead, I leave
you with a theorem which should suffice for most of our purposes.

Theorem 16. If G is a group acting freely and properly discontinuously on a simply connected manifold
X, then X /G is a manifold with m(X/G, [x]) = G

2.4 Poincaré homology sphere

The symmetries of the icosahedron form a subgroup I ¢ SO(3) of order 60 called the icosahedral
group. The Poincaré homology sphere is the quotient space P = SO(3)/I. Topologically, the group
SO(3) is RP? = §3/ antipodal map. (We will explain this in a moment. ) There is a group I of order
120 called the binary icosahedral group such that P = SO(3)/I = SU(2)/ I. Since SU(2) ~ $3is simply
connected, it follows from the above theorem that 7;(P) = I. The group I is perfect, meaning that
it is generated by its commutators. Consequently, the abelianization of I (the group obtained by
imposing commutativity) is trivial. Once we understand more about homology and cohomology, we
will see how this implies that the cohomology ring of P is isomorphic to that of $*. That’s why P is
called a (co)homology sphere.

2.5 Lens spaces

Let p and g be coprime integers. The lens space L(p; q) is the quotient space of the unit sphere §*> ¢ C?
under the Z, action generated by

(21, 22) ~ (e¥"/Pz, e*™19IPz,),

Thus m(L(p; q), x0) = Zp. There is a natural orientation induced from $3, and L(p; q) = L(p; —q) by
conjugating the second coordinate.

Lens spaces provide many useful examples for understanding different levels of classification. For
example, two lens spaces L(p; q1) and L(p; q,) are orientation-preserving homeomorphic (equivalently
diffeomorphic) iff g1g5" = 1 (mod p). More generally, they are homotopy equivalent iff g1g3! = n?
(mod p) for some integer n.

For example, L(5;4) = L(5;1), so L(5;4) and L(5; 1) are orientation-reversing homeomorphic. How-
ever, they are not orientation-preserving homeomorphic since 4 - 1*! = 4 # 1 (mod 5). Thus they
are “topologically chiral” In contrast, they are orientation-preserving homotopy-equivalent since
4 = 22, 50 they are “homotopically achiral”

As another example, since 3-1*1 = 3 £ 1 (mod 7), it follows that L(7; 3) and L(7; 1) are not orientation-
preserving homeomorphic. Nor are they orientation-reversing homeomorphic since —3-1*! = -3 # 1

(mod 7). They are orientation-reversing homotopy equivalent since L(7;3) = L(7;4), and L(7;1) is
orientation-preserving homotopy-equivalent to L(7; 4) since 4 - 1! = 22 (mod 7). However, L(7;3)
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and L(7;1) are not orientation-preserving homotopy-equivalent since 3 is not a square modulo 7.

L(5; .
0.p. homeomorphic Tfi))o.p. homotopy-equivalent
L(s;1)lL(5;4) L(7;1)lL(7;3)
. L(731) .
homeomorphic homotopy-equivalent

L(7;3)

2.6 Notes on classification

Classification of 3-manifolds is based on Thurston’s geometrization conjecture. Roughly, this states
that every three-manifold can be decomposed in terms of certain “geometric” pieces. Perelman
showed that these pieces can be obtained via the Ricci flow

digij = —2Ryj,

where g;; is a Riemannian metric, and R;; is the Ricci curvature tensor. This is an evolution equation
which behaves like a heat equation, tending to uniformize the curvature. Singularities develop,
for instance, as the various geometric pieces pinch off, and one of the major technical obstacles
is understanding how to deal with these singularities so that the flow can continue. Perelman’s
results essentially reduce the classification problem to understanding the geometric pieces and their
possible quotients. Consequently, the theory of 3-manifolds involves much group theory related to
the possible fundamental groups which arise.

In higher dimensions, the group theory becomes literally impossible. Any finitely presented group
can appear as m(X) for compact X when dim X > 4. The classification of finitely presented groups is
undecidable. Philisophically, the idea is that given any fixed axiom system, it’s possible to manufacture
a group presentation which effectively encodes a statement such as, “triviality of this group is
equivalent to a proof with your axioms that this group is nontrivial” Assuming consistency of your
axioms, such a group must be nontrivial. However, your axioms cannot provide a proof. Thus it
does not lead to inconsistency to make an axiom which declares that the constructed group is either
trivial or nontrivial.

Since the general classification problem is doomed from the start, typically one focuses on classifying
simply connected manifolds in these dimensions. When n > 5, classification of simply-connected
smooth manifolds is generally considered well-understood due to surgery theory, which essentially
reduces classification to an algebraic problem thanks to the h-cobordism theorem. However, in
dimension 4, things go wrong due to failure of the “Whitney trick” Given two submanifolds P and
Q of complementary dimension, they can be perturbed to intersect transversely to meet in finitely
many points. If everything is oriented, then these intersection points have signs. One wants to be
able to cancel intersection points which have opposite signs. The strategy is to form a loop by taking a
path inside each of P and Q between the intersection points. We wish to to fill this in with a smoothly
embedded “Whitney disk,” which then allows us to slide apart the surfaces. In dimension 4, such
disks will generally have self-intersections. Roughly speaking, Freedman’s classification of simply
connected topological 4-manifolds uses an infinite sequence of modifications, called Casson handles,
to eliminate self-intersections, but not smoothly.
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2.7 Classification of unimodular symmetric bilinear forms

We can summarize the results with the following table:

’ \ odd \ even ‘
indefinite | m (+1) ® n(-1) \ +mEg®nH
definite | too difficult, but we only encounter m (+1)

A unimodular bilinear form Q is positive/negative definite if Q(x, x) is always positive/negative for
nonzero x. If Q is neither positive definite nor negative definite, then Q is called indefinite. If Q(x, x)
is always even, then Q is called even. Otherwise, Q is called odd. For example,

()

() (9 o )(3) =2

Note that Q is even iff its diagonal elements are always even. (This is because off-diagonal entries
automatically acquire a factor of two.)

is even and indefinite, since

An even positive-definite form arises via the Cartan matrix for the Lie algebra Eg:

2 -1 21
-1 2 -1 1 21
-1 2 -1 1 21
-1 2 -1 1 21
Eg = ZI—AEs= 1 2 -1 1 ~ 1 2 1 1 =2]+AES.
-1 2 -1 1 21
-1 2 1 2

-1 2 1 2

Classification of unimodular definite forms is not understood, and the numbers grow rapidly with
rank. Thankfully we are saved from this hopeless situation by

Theorem 17 (Donaldson). If X is a simply-connected 4-manifold with Qx definite, then
1

Qx ~ £ =m(x1).
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Indefinite forms are much easier to classify. If Q is indefinite and odd, then Q is diagonal:
Q ~ m(+1) ® n(-1),
with m, n > 0. If Q is indefinite and even, then
Q~+mEg®dnH,

where n > 0, m > 0, and —Ej is to be understood as Eg with the opposite sign.

Remark. Indefinite forms are completely classified by rank, signature, and type (even/odd). For
example, Eg ® —Eg ~ 8H since it is even of signature zero. Also, Eg & (1) = 8 (+1) ® (-1) which is
odd of signature 7.

Now that we understand the possible cohomology of closed oriented 4-manifolds, we can try and
ascend our classification hierarchy to understand smooth 4-manifolds. Recall that we restrict to
simply-connected closed 4-manifolds because the general classification problem would encompass
the impossible classification of all finitely presented groups, which arise as fundamental groups. Now
we attempt to use cohomology to ascend the classification hierarchy. The first step proceeds without
difficulty. Hatcher gives a complete proof of:

Proposition 18 (Algebraic Topology, 4C.3). For a simply-connected closed topological 4-manifold,
cohomology determines homotopy type.

Thanks to the incredible work of Freedman, we can ascend to homeomorphism classification:

Theorem 19 (Freedman). For any unimodular symmetric bilinear form Q, there is a closed simply-
connected topological 4-manifold with Q as its intersection form. Furthermore,

o if Q is even, the manifold is unique up to homeomorphism,

o if Q is odd, there are two homeomorphism classes, at least one of which is not smoothable.

Note that for any intersection form Q, there is at most one homeomorphism class containing a smooth
manifold. Consequently, two simply-connected smooth 4-manifolds X; and X, are homeomorphic
iff Qx, ~ Qx,!

At this point, the natural question is: given an intersection form, how many smooth 4-manifolds
does it correspond to?

For all definite forms except for the diagonal, the answer is zero by Donaldson’s theorem.

Next we list what we have: Qgp2 = (+1), Q@ = (-1). Qq25s2 = H. These realize all intersection
forms without a +Ejg factor.

Note that if Qx is odd, then X is homeomorphic to mCP*#nCP?,

To see examples of manifolds with an Eg factor, we go to complex geometry. The family Calabi-
Yau manifolds of complex dimension 2 is called the K3 surfaces. Since they are all diffeomorphic,
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differential topologists call them the K3 surface. One description is the quartic hypersurface in CP?
defined by
Zg+Z;l+Z§+Z§:0, (Z():Zl:Zz:Z3)€C|]:D3.

It turns out that
Qg3 = —2Eg @ 3H.

It’s not possible to find a smooth 4-manifold with a single copy of Eg. For now, we state without
proof that for X a simply connected closed 4-manifold,

Qx even = tangent bundle of Xadmits a spin structure =: X is spin

There are several interesting theorems on spin manifolds.

Theorem 20 (Rokhlin). If X is a smooth spin 4-manifold, then the signature satisfies 0(X) = 0
(mod 16).

Since a closed simply-connected spin 4-manifold has intersection form
Q~+mEg®dnH,

we compute
0(Q) = +8m.

Thus Rokhlin’s theorem implies m is even.

Next we ask whether it is possible to reduce the number of H in K3. Furuta used the Seiberg-Witten
equations to prove

Theorem 21 (Furuta (2001)). If X is a closed oriented spin 4-manifold with by(X) # 0, then

by(X) > % lo(X)| + 2.

Substituting b,(X) = 8m + 2n and |0(X)| = 8m, the above inequality is equivalent to n > m + 1.
Thus for K3, n > 3, so we have the minimal number of H.

Closely related

Conjecture 22 (¥). If X is a closed oriented spin 4-manifold, then

ba(X) > §|0<X>|.

This is equivalent to n > 2m. By Freedmans classification, this is equivalent to the conjecture that
any simply-connected closed oriented spin 4-manifold be homeomorphic to

K3 #(n - %m) (82 x §2),
where of course the number of copies of each type is a nonnegative integer.
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Assuming the § conjecture, all smooth closed simply connected 4-manifolds are homeomorphic to

connected sums of CP2, CP?, K3, K3, and $2 x S% = §2 x S2. Furthermore, based on the classification
theorem, we can read off all the relations

K3#K3 = 225> x §2,
K3#CP? = 4CP*#19CP?,

K3#CP? = 3CP?*#20CP?2,
CP?#S? x §? = 2CP*#CP?,

plus the corresponding identities obtained from the above by reversing the orientations. Thus the
smooth classification problem is focused on classifying exotic structures on these connected sums.
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Chapter 3

Bundle theory

3.1 Cech cohomology

It is extremely useful to be able to switch perspectives on cohomology. De Rham cohomology relates
to calculus of differential forms. Singular cohomology relates to submanifolds. Cech cohomology
will relate to fiber bundles. The equivalence of these theories provides deep connections between
these subjects.

Suppose we have an open cover {U,} of our manifold X. We define the chain complex CP({Uy) 3 A)
as follows. Denote multiple intersections by

U(xﬁ =U,N U[;, Uaﬁy =U,N Uﬁ NnuU,, etc.

A Cech p-cochain ¢ associates to each p + 1-fold intersection Uapay-—a, @ locally constant function

¢0‘00‘1"'(xp : UO{()O(]M(XP - A.
Cvp({Uoc} ;A) = {(p = {¢“0(x1""xp . U(XOOCI"'OCP e Alocally Constant}} A
The coboundary map is

d: CP({U,); A) — CPH({UL); A)
p+l

where &} denotes omission of a. It’s easy to verify that d> = 0. If ¢ € C°({U,}; A), then ¢ defines
a collection of locally constant functions ¢, : Uy — A. If d$ = 0, then for each U, N U, we have
0 = ¢ — P, so the ¢, agree on the overlaps and determine a locally constant function ¢ : X — A.

As usual, we define
kerd

HP({Ua} 5 A) = :
image d

But we want cohomology to depend on X rather than a given cover. A different open cover {\//3 } pey

is called a refinement of {Uy} 4 if each Vj is contained in some U,. Fixing a choice Vg C Uy s) of
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some function 7 : ] — I induces a restriction map
CP({Ua}s 4) — CP({Vp} 5 4).

The induced map on cohomology HP({U,}; A) — HP({V[;} ; A) does not depend on the choice of 7.

Note that any two open covers {U,},; and {Vﬁ} ge) have a common refinement {Ua N V,g}
We define

(a,B)eIx]’

HP(X;A) = dirlim  HP({Ua}; A).
{Uy} open cover
This means that any element of H?(X; A) is represented as a Cech cocycle with respect to some
specific cover {U,}, and two elements in H?(X; A) are equal iff they become equal under a common
refinement. Thankfully, we don't have to worry about this direct limit in practice.

A cover {U,} is called a good cover if each U, is contractible, as well as each finite intersection Uag--ay-
If {Uy} is a good cover, then HP(X; A) = HP({U,} 5 A).

Good covers always exist on a smooth manifold. We can pick a Riemannian metric, and then use
metric balls which are sufficiently small to be geodesically convex, meaning that any two points are
joined by a unique geodesic. Any geodesically convex subset is contractible, and intersections of
geodesically convex subsets are geodesically convex. (The naive strategy would be to use convex
coordinate charts, however convexity is not preserved under coordinate change. But geodesic
convexity with respect to a fixed Riemannian metric is.)

Like our previous cohomology theories, H?(X; A) is canonically isomorphic to sheaf cohomology,
and thus can be identified with de Rham and singular cohomology.

3.2 Bundle theory

A smooth Euclidean vector bundle of rank k over a manifold X is a projection map 7 : E — X such that
each fiber 771(X) is a Euclidean vector space, and they fit together via smooth local trivializations

E |y, U, x Rk

A

Ua

where the {U,} cover X, and the ¢, parameterize fiberwise linear isometries ¢,(x) € Iso(RX, E|,).
Note that ¢ = {¢,} defines a map

1, Ua x RF

N A

X

which covers E, and two points (x,v), € Uy X R¥ and (x, w)g € Ug X Rk map to the same point in E
iff
Pa(X)v = Pp()w = v = ¢, (V)Pp(x)w = Pap(x)w,
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where

Pup(x) = ¢y (x)Pp(x) € Tsom(RF — R¥) =: O(k).

As ¢, ranges over all possible x, it defines a function ¢,5 € C*(Uyg; O(k)) called a transition function.
After identifying corresponding points [x, (/)a/g(x)v] L~ olp the map ¢ induces an isometry of
Euclidean vector bundles

Thus every smooth Euclidean vector bundle is isomorphic (=isometric) to a vector bundle determined
by transition functions ¢ € C*(Uyg; O(k)). According to the definition ¢,p(x) := ¢;1(x)q5/; (x), the
transition functions are readily verified to satisfy the cocycle condition on the triple-overlaps Uyqg:

¢ocﬁ¢;é¢yoc = Id. (3.1

Simple consequences include ¢on = Id, and ¢g, = gb;/lj
Conversely, any collection of transition functions ¢o € C*(Uyg; O(k)) for any open cover {Uy}
satisfying defines a vector bundle [ [, U, x R¥/ ~.

3.3 Frame bundles

Often various operations with vector spaces involve expressions which make use of a basis. Usually
it is possible to find a more insightful alternative construction which does not involve a basis. In
particular situations, it may be unwieldly or impossible to avoid such constructions. But making a
choice of basis is ugly, and there is a clever way around it.

Rather than choose a particular basis, the more satisfying and mathematically invariant approach is
to parameterize constructions over all such choices of bases. This leads to the notion of a torsor and
its parameterized version, the principal bundle. To motivate the definitions, we examine the case of a
vector bundle.

For simplicity, we first study the set of bases of a single vector space. Let V be a Euclidean vector
space of rank k. Observe that an orthonormal basis for V is equivalent to a linear isometry V « R,
Specifically, the image of the standard basis {e; }le of R* determines an orthonormal basis of V. Thus
we define the orthonormal frames on V to be the isometries

FrO(V) := Isom(V « RK).

This perspective makes clear that there is a natural right action of O(k) := Isom(RF «— RK) on
FrO(V) by composition. Specifically, if ¢ € Fr(V) and g € O(k), then

¢g € Isom(V « R¥ « RF) = FrO(V).
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For any ¢, ¢ € FrO(V), there is a unique g € O(k) such that ¢; = ¢og, namely
¢1 = ¢o (45 1) -
N’

€O(k)

Thus if we fix a basepoint ¢y, we see that Fr°(V) is in bijection with O(k) via ¢ — ¢;'¢. But apart
from such an identification, it makes no sense to compose elements of Fr®(V), so it is not a group.
Instead, we say that FrO(V) is a right O(k) torsor, where a torsor is a space with a free and transitive
right group action. More concretely, a torsor is like a copy of a group that has “lost its identity;” but
still knows how to act on itself by left or right multiplication.

Simultaneously, FrO(V) is a left Aut(V) = O(V) := Isom(V « V) torsor via composition on the
other side:
O(V) U FrP(V) O O(k),

and these actions clearly commute.

Although R* and V' are not naturally isomorphic, the two corresponding trivial bundles over FrO (V)
are. There is a natural isomorphism

FrO(V) x R¥ — Fro(V) x Vv

given by
(¢, x) = (¢, ¢(x)).

This natural isomorphism achieves the desired goal of identifying R* and V' (over the space of frames)
without a choice of basis.

3.4 Associated bundles

The isomorphism of the previous section allows a powerful construction for transfering structures
on RX to structures on the abstract vector space V as follows. There is a diagonal left action of O(k)
on FrO(V) x R* given by

9(¢,x) = (¢g™", 9x).

The map

FFO(V)xRF — v
(¢, x) = ¢(x)

is invariant under the action of O(k):
9(¢.x) = ($g7,9%) > (g g%) = $(x).
It is straightforward to verify that we get an isomorphism

FrO(V) x Rk = v
—O(k) — V.

33



Indeed, fixing any ¢y € FrO(V), every point [¢, x] in the quotient is equivalent to a (unique) point
of the form [¢g, x"] for x” € R". To verify, note that equivalence on the quotient can be rephrased as

[¢g,x] ~ [$,gx]. Then
(.51 = [90 (45"9) ] = [40. (95"¢) x]

These representatives [¢g, x| are mapped isomorphically to V as [¢g, x] — ¢o(x).

There is an important generalization of this construction called an associated space. Suppose F is a
space with an action of O(k), i.e. we have a homomorphism p : O(k) — Aut(F). We combine the
right action on Fr®(V) with the left action of F to define

FrO(V)x F

0 —
FrO(V) x, F := om0

where equivalence is given by [¢g, f] ~ [¢, p(g)f]. This allows us to associate structures from the
model space R¥ to an abstract copy V, so long as the structure is O(k)-invariant. For example, when
pst is the standard representation on R¥, from the previous computation we get

FrO(V) x,, R = V.
If ppr is the representation O(k) — O(A? R¥) on the p-th exterior power, then
FrO(V) X, , A’R* = APV
If Ad : O(k) — Aut(O(k)) is the adjoint action g = (h — ghg™), then
FrO(V) xaq O(k) = O(V)
via
[¢,h] — ¢h¢™! € Isom(V — RF — R* V).

The adjoint action is appropriate since [¢g, h| and [(/), ghg'l] correspond to the same element of
o(V).

We can repeat these constructions fiberwise for a smooth Euclidean vector bundle of rank k, 7 :
E — X. The orthonormal frame bundle Fr®(E) is the fiber bundle over X whose fiber at a point x is
FrO(E|,). It carries commuting actions

(%g = T(Aut(E))) O Fro(E) O C®(X;0(k)),

where I'(X; Aut(E)) denotes smooth sections of the bundle whose fiber over any point x are the
isometries of E|,. These are also known as gauge transformations.

Given p : O(k) — Aut(F), we can form the associated bundle

FrO(E) x F

(0] —
FrO(E) x, F := o

with the same equivalence relation fiberwise.
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Given a local trivialization {¢,}, the any associated bundle may be reconstructed via transition
functions:

FrO(E) x, F ol o Ua X F/ ~,

\ /
X

where ¢y ([x, fl a) = [pa(x), f]. We compute that the necessary equivalence relation on [ [, Uy X

F/ ~ must be [x, ] g~ [x, p(dap)f ] . by equating equivalent points in the image:

[x.f 1o ~ [x.£1
= ¢a ([x.11a) ~ 05 ([x.f15)
= [¢al0).f] ~ [$p(x).f]
= [0al0).f] ~ [ul0)5' (¥)pp(x). f]
= [$a0).f] ~ [$alx), p ($ap) f]
= f=p(¢as) f-

Thus the associated bundle uses the same transition functions, but they are represented on a different
fiber.

One important example is that the bundle Aut(E) := FrO(E) xq O(k), whose whose fiber over a
point x is O(E|), and whose global sections are &g := I'(Aut(E)).

A principal G-bundle is a fiber bundle associated with the action p; : G — Aut(G) given by left
multiplication g — (h +— gh). For example,

FrO(E) x,, O(k) = FrO(E)

by the map
[¢(x), 9] > ¢(x)g.
Thus FrO(E) is a principal O(k) bundle.

More generally, given any fiber bundle 7 : H — X with fiber F, there is a principal Aut(F) bundle
P such that the fiber P|, is Iso(H[, « F). There is clearly a right action on P by Aut(F) (which
generalizes to an action of C*(X; Aut(F))). If p is the standard representation p : Aut(F) — Aut(F),
then P X, F = H. In the case when F = R* with the standard Euclidean structure, then H is a
Euclidean vector bundle, and P is the orthonormal frame bundle.

The moral is that any fiber bundle H with fiber F is equivalent to a pair (P, p) where P is a principal
G-bundle, and p : G — Aut(F).

3.5 Cech cohomology revisited

Recall that Cech cohomology is described by
CP({U,}; A) := {qb = {‘/’aommcxp : Ungay -, — Alocally constant}} ,
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with differential

d: CP({Uy}; A) — CPH({Uy) 5 A)
p+l

(d¢)aoal...ap+1 = Z(—l)k ¢a0---5c;<---¢xp+1~
k=0

There is no reason to restrict to locally constant functions valued in an abelian group. In the context
of principal bundles, we consider more general sheaves (i.e. classes of functions or sections) and try
to make sense of Cech cohomology.

Recall that a local trivialization for a Euclidean vector bundle is a smooth map which for each x € U,
gives an isometry ¢, (x) : Rk - E|,. Each ¢4(x) is an orthonormal frame, so it is equivalent to say
that ¢, € I'(U,; P) is a smooth section of the orthonormal frame bundle.

For a general principal bundle P, a local trivialization is equivalent to a local section. A system of
local trivializations covering P is equivalent to a collection of local sections {¢, € I'(U,; P)}. In the
Cech framework,

¢ = {¢a} € C°CX;P).

Transition functions are ¢og = ¢, ¢ € C*(Uyp; G). This is the nonabelian version of an alternating
sum with omitted indices, so we should interpret

d{ga) = {$ap = 6585} € C'OGCT(G)).

The relation d* = 0 still holds if we interpret

d {$up} = {Gupy 1= 0y Py bus} -
The condition
¢ﬁy¢;)1/¢ocﬁ =1
is the cocycle condition for transition functions, and incorporates all the constraints for general

transition functions. Usually the constraints are written with three formulas, but this form encodes
them all into one. Setting & = 8 = y, we get

1= ‘paaﬁb;;c%a = aa-

Setting only y = a, we get
Ppabuabap =1 = Ppa = $p-
Finally,
(Pﬁyﬁb;)l,(/)a[; =1 & dupdpydya = 1.

If ¢ € CP(X; &), this means that on some open cover {U,}, there is a collection of functions
{gbao...ap €S (Uao...%)}, where the sheaf & determines some class of functions on each overlap
Uag-a, := Ugy N -+ - N Uy,. Whenever & is a sheaf of abelian groups, then

p+l
dg = {gbao...apﬂ = Z(—l)"%..@_.%ﬂ} .
k=0
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In other cases, we must find a suitable alternative interpretation in the same spirit.

Given a system of local trivializations {¢,} of a fiber bundle, each ¢, is equivalent to a local section
of the principal bundle P over U,. Thus a local trivialization is equivalent to an element of C°(X; P).

The transition functions are {%,8 = ¢;l¢/3}, which should be thought of as a Cech differential

{$up} = d (¢} € C'(X: Ge),
with smooth G-valued functions (as opposed to locally-constant G-valued functions).

Not all elements of C'(X; G¢) arise in this way from some principal bundle. The relation d? = 0
still holds if we interpret

d {$ap} = {Gapy = Bpy Py Bus) -
The condition
Oy Paydap = 1d
is the cocycle condition for transition functions. Usually the constraints are written with three formulas,
but this form encompases them all. Setting « = 8 = y, we get

Id = ﬁbaa‘ﬂé%a = Paa-
Setting only y = «, we get
(bﬁrx(/);;c(/)aﬁ =ld = ¢p = (/);;;
Finally,
¢/3y¢;)1/¢06/3 =ld = ¢aﬁ¢/}y¢yrx =1d.

It’s convenient to introduce the notation ker d := Z? ¢ CP where Z? denotes the cocycles which are
the cochains with trivial differential. In summary, we have a map
d: C°(X;P) - Z'(X; C™(G)).

local trivializations = (gidfine coe functions

sfying cocycle condition)
We now proceed to systematically develop bundle theory by asking natural homological questions.

Any element {qbaﬁ} e Z\(X;C®(G)) is represented as the image of d from some principal bundle P’
In particular, the cocycle condition is precisely the consistency condition required to carry out the
gluing construction P’ := [[, U, X G/ ~ which realizes the transition functions {(balg}.

Next we should ask how the choice of local trivialization affects the transition functions. As a guiding
principle, we will discover an analogue of the exact sequence in ordinary cohomology:

) 4. .
021 C1' 27 »H -0
We will interpret an analogue of this with i = 1 and coeflicients in G¢e.

We call an element of C%(X; Gcw) a change of trivialization. To explain, we obtain a right action of
CO(X; C*(G)) on C°(X; P) by
{¢a} - {90} = {Pagal -
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Furthermore, the action is transitive (one orbit) since, after possibly refining the open cover, any
(¢ is obtained by ¢} = [gal - {(¢3'9%)}

There is also a right action of CY(X; Ge) on CY(X; Gew) given by {¢aﬂ} {ga} = {g;l(paﬁgﬁ}.
Furthermore, under these actions the Cech differential is equivariant:

d ({¢a) - {9a)) = d ({$ada)) = {92"62" 0595} = d (16a}) - {9} -

In summary,

CO(X; P)

N

CO(X; Gew) ~~—> ZI(X; Ge)

where a squiggly arrow indicates a group action instead of an actual map. Note that since C°(X; P)
consists of a single orbit, by equivariance, the image of d is the corresponding orbit in Z!(X; G¢w).

Suppose two principal bundles P, and P, share a common element in ZYX; Gew). Then Py and P,
correspond to the same C%(X; G¢) orbit. Furthermore, they are both isomorphic to the gluing
construction P’. Thus P, and P, must be isomorphic. This establishes a correspondence

. ZMX; Ge=) :
iso classes of > ¢ :
incipal G-bundles = : v =t H(X; Gc=).
prRAPEEDIATE  action of CO(X; Gew)

C(X; P)
N
CO(X; Ge) ~~m ZH(X; Gow) — HY(X; Geo) — 0

The next question is when does a change of trivialization act trivially on transition functions. For a
meaningful answer to this question, we should fix local trivializations {¢,} € C°(X; P). Then it could
happen that our change of trivialization {g,} € C°(X; Gc~) satisfies

92 bapdp = bup
= go =PapgpPup

i.e. the g, transform via the adjoint representation. To cast this in the correct language, we should
interpret Z° for any associated bundle

{fu € C®(Uy, F)} € Z°(X;P X, F) = H'(X; P x, F)

not in terms of the kernel of some differential, but rather as a collection of local sections which agree
on the overlaps, thus defining a global section. In corresponding trivializations, fo = p(¢4s)fs. Thus

in our case, {g4} € Z0(X; P x Ad G) = Z%(X; Aut(P)) = ©p. So the changes of trivialization which
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preserve transition functions are the gauge transformations.
local
trivializations
—_—

CY(X;P)

0 — Z°(X; Aut(P)) — C*(X; Gw) ~~= Z1(X; Gow) — H'(X;Geo) —0

bundle changes transition isomorphism
automorphisms of functions classes of smooth
trivialization principal G-bundles

We should mention the caveat that our identification of Z°(X; Aut(P)) with a subset of C%(X; Gc)
depends on the choice of local trivializations {¢,}.

3.6 Sequences from coefhicients

In ordinary cohomology, a short exact sequence of abelian groups0 - A - B — C — 0 givesa
short exact sequence of chain complexes 0 — C*(X;A) — C*(X;B) — C*(X;C) — 0 which gives a
long exact sequence of cohomology

- = H'(XGA) > H'(X;B) > H'(X;C) » H'(X;A) > H'(X;B) > -+

We can imitate this with principal bundles. For example, consider

2mix

0—>Z—>|Re—>U(1)—>O.
This gives
= H'(X;Ree) = H'(XGUW)ew) —» HAX;Z) —» H*(X;Res) — -« -

Beware that HP(X; Rc) is not equivalent to HP(X; R). Resolving the space of locally constant R-
valued functions is much more interesting than resolving the space of smooth R-valued functions.
Since C*(R) already has a partition of unity, it is resolved by

C°X;R) - 0—->0—---
Thus H°(X; Re) = C¥(X;R), and H? (X; Re) = 0 for other p- On the other hand, since Z has the
discrete topology, smooth Z-valued functions are locally constant. Thus
0 > H'(GU1)ee) — HA(X;Z) — 0

so the group of isomorphism classes of smooth principal U(1) bundles is equivalent to the group
H?*(X;Z). Via the standard representation, principal U(1) bundles correspond to complex line
bundles. Group composition on H'(X; U(1)c) corresponds to multiplying together the U(1)-valued
transition functions, which is equivalent to tensor product. The isomorphism labeled ¢ is called the
first Chern class. The homological algebra makes ¢; explicit. The recipe to compute it is as follows.
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« Fix a “good cover” {U,} of X so that all intersections are contractible.

« Given an isomorphism class [P], choose a representative P. Pick local trivializations to obtain
transition functions {¢a,3} € ZY(X; U(1)¢w) for P.

« Since each U, is contractible, we can choose branches for { Nap = (2mi )1 log ¢a/3} € CHX; Rew).

Consider d {ﬂaﬁ} = {1104;), =1y — Nay + 11“/;}. By the cocycle condition for {‘/5«/3}, eX ey = 1.
Thus {Waﬁy} € ZZ(X;Z).

 The cohomology class ¢;([P]) € HX(X;Z) is represented by {qaﬁy}.

It’s tedious but routine to verify that the result is independent of choices.

3.7 Extension of structure group

Recall that a central extension G of G is a short exact sequence of the form
0oA>G—>G— 0,

where A is an (abelian) subgroup of G. We want to know when it’s possible to lift transition functions
from a structure group to an extension. The prototypical example is

0 — Z, — Spin(k) — SO(k) — 0.

The group Spin(k) for k > 1is characterized as the unique nontrivial Z, extension of SO(k): Thus
Spin(k) is the total space of a principal Z,-bundle over SO(k). These are classified topologically by

HY(SO(k); Z,) = Hom(H,(SO(k); Z); Z5) ® 0 = Hom(m (SO(k))*®; Z,).

We know that m(SO(2)) = m(S') = Z, and m(SO(3)) = m(S3/Z,) = Z,. It’s easy to show that
m(SO(k + 1)) = m(SO(k)) for k > 3. Thus H'(SO(k); Z,) = Z, has a unique nontrivial element
corresponding topologically to Spin(k).

The part of the long exact sequence of Cech cohomology which makes sense is given by
HY(X; Z,) ~» H'(X; Spin(k)c=) — H'(XSO(K)es) = HA(X; Z2).

An isomorphism class [P] € HY(X; SO(k)c~) comes from an element of H(X; Spin(k)ce) if and
only if wy([P]) = 0 € H?*(X; Z,). There can be several isomorphism classes of principal Spin(k)
bundles lifting the same class of SO(k) bundles. The action of H!(X; Z) is transitive, but not always
free. However this action becomes free if we refine our notion of lift. This refinement is an essential
subtlety for the definition of a spin structure.

As before, suppose 0 - A — G — G — 0 is a central extension, and P is some fixed principal G-
bundle. A lift of P to the structure group G is a principal G-bundle P equipped with an isomorphism

40



of P with the G-bundle associated to the quotient of P by A. Two lifts are equivalent if they are related
by an isomorphism of P which induces the identity on P. (A general isomorphism of P induces an
isomorphism on P which is not necessarily the identity!) Be warned that it is possible for inequivalent
lifts to be isomorphic as principal G-bundles.

To understand the equivalence classes of lifts of such a bundle P, suppose that {qbaﬁ} e ZY(X;G) is
a Cech cocycle representing the the transition functions for P relative to some local trivialization.
If the cochain {(504;} € ZY(X; G) is an arbitrary choices for lifts to G, then the combination w, :=
[{gﬁaﬁéﬁy@a}] € H2(X; A) is called the generalized second Stiefel-Whitney class, and depends only
on the isomorphism class of P, i.e. [{(baﬂ}] € H'(X; G). The cochain {qgaﬁ} can be chosen to be a
cocycle if and only if w,([P]) = 0. Such a cochain then corresponds to a lift P of P. Any other lift
is of the form {aaﬁéaﬁ} for {aa/;} e Z1(X; A), and two such lifts are isomorphic if and only if they

represent the same element of H'(X; A). In this manner, the space of lifts of P up to equivalence is an
H'(X; A)-torsor when w,([P]) = 0, and empty otherwise.

Recall from last time, we derived the “exact sequence”

local
trivializations

{¢a}
—

CY(X;P)

{90} {90 }={$ag} d={¢a} = {pupi=0"¢5}

‘19a = ;1 » v v
0 — Z%(X; Aut(P)) — C°(X; Gcw{)‘bwf}» ZYX;Gew) — HMX;Gew) —=0
~— ~—— ~—— ~—

bundle changes of transition isomorphism
automorphisms trivialization functio_r}s classes of smooth
{9a}|ga=¢aﬁgﬁ¢;é {94} {0ap} 10y 00y Pap=1 principal G-bundles

Note that bundle automorphisms transform via the adjoint representation. Also, local trivializa-
tions correspond to local sections of P. In particular, a global section of P corresponds to a global
trivialization of P, so P has global sections iff it is isomorphic to the trivial principal bundle P = X X G.

Another important question is when does Cech cohomology with smooth coefficients HF* (X5 Gew)
coincide with ordinary cohomology H k(X; G) with locally constant coeflicients. In order for H k(X;G)
to make sense, G should be abelian. In this case, in order to naturally identify H*(X; Ge) with
H*(X; G), we want to identify the sheaf G¢~ with the locally constant sheaf G. But Ge~ corresponds
with the locally constant sheaf whenever G has the discrete topology. For example, smooth Z-valued
functions are necessarily locally constant. In contrast, H*(X;Rce) = 0 for k > 0 thanks to partitions
of unity, while H*(X; R) is usually nontrivial.
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3.8 Reduction of structure group

Suppose P is a principal G-bundle, and H C G is a subgroup (not necessarily normal). Then we have
a “short exact sequence”
0—>H—->G—-G/H—O.

(When H is not normal, we should think of “exactness” as the property that each coset of G has a
free and transitive action of H.)

To keep in mind a concrete example, consider
0 — O(k) —» GL(k) — Met(k) — 0,

where

Met(k) := {symmetric positive-definite matrices} = GL(k)/O(k).

How is GL(k)/O(k) identified with positive-definite matrices? Consider the map GL(k) — Met(k) is
given by g = (97) 7 Tdgek 7! = pumet(9) Idgxk. (What's the reason for this transformation law? Hint:
we want the inner product of two vectors to be independent of frame.) Clearly if / is orthogonal, then
gh has the same image as g, so we get a well-defined map from left cosets GL(k)/O(k) — Met(k).

Exercise. Verify that the map M — M~Y/2 is the two-sided inverse Met(k) — GL(k)/O(k) by
assuming the polar decomposition g = ph for any g € GL(k), p positive-definite, and / orthogonal.

The associated bundle P x, GL(k)/O(k) = P X, Met(k) then corresponds to the bundle of
Euclidean metrics on the corresponding fibers. A global section

s € HY(X; P Xy, Met(k)) = T(X; P Xy, Met(k))

corresponds to a metric on the associated standard vector bundle E = P X, R¥. A metric then deter-
mines an O(k) structure on P. It picks out the subset of local trivializations which are orthonormal,
and upon restriction to these, the transition functions take values in O(k).

More abstractly, given the principal G-bundle P, we seek to modify it so that the transition functions
take values in H. Specifically, suppose {¢,} are local trivializations such that {gba[;} € ZM(X; Geo).

We seek a change of trivialization {g,} € C%(X; Gew) such that {(paﬁ} - {ga} belongs to ZY(X; Hew).
Thus g,'$apgp = hap for some hog with values in H. Equivalently, g, = ¢aﬁgﬁh;;3 € dapgpH, s0

{9.H} € H'(X;P X, G/H).

Conversely, given any section of P X, G/H, it’s easy to see that if we can locally locally we can lift to
{ga} € CO(X; Ge), then the corresponding

h(x’/_g = g;l(ptxﬂgﬂ € COO(Uaﬁ;H)

so that
{hag} € Z(X; Hew)
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determines a principal H-bundle. Homologically, we have the following “exact sequence”

v Jo *19aH {:=1gagaH v aH'_)gltx v
Gp = HO(X; P Xaq G){M,},, HO(X; P x,, G/FH MHI(X; Hew)

—_—
{ga } |9a=%apdp ¢;é reductions
{9aH}1gaH=00pgsH

H'(X; Ge) H'(X;(G/H)c~)

Note that H'(X; (G/H)c~) only really makes sense when H is normal, since otherwise there is no

clear interpretation of the cocycle condition ¢, H ((/)ayH ) - ¢apH = L In this case, P X, G/H is the
associated principal G/H bundle. Homological algebra dictates that reductions should only exist
when the corresponding principal bundle P X,, G/H is trivial. Indeed, reductions correspond to
global sections of this principal bundle, so they exist iff it is trivial.

Regardless of whether or not H is normal, what really counts is the space of reductions I'(X; PX,, G/ H).
These reductions, up to the action by gauge transformations, parameterize the isomorphism classes
of smooth principal H-bundles over P.

A more sophisticated application of this formalism is the following:

Theorem 23. Over a complex manifold X, a reduction from a smooth vector bundle E — X to a

— -2
holomorphic vector bundle is equivalent to a d-operator on E which satisfies 0, = 0.

To understand why, consider the sequence of sheaves given by
0 — O(GL(k;C)) —» C*(GL(k;C)) — Hol(k) — 0,

where O(GL(k; C)) denotes the sheaf of holomorphic functions valued in GL(k; C), and Hol(k)
denotes the space of operators

da : Q°(U; CF) - Q¥(U; CF)
subject to the additional constraints
. ga(fs) = (Ef) s +f5as forall f € Q°(U;C) and s € Q°(U; Chy,
e 0= gis e Q%(U;C) for all s € QO(U; CF).
The map C*(GL(k)) — Hol(k) is given by
g godog=go(dg +g73) =3 @a)g

where  is the coordinatewise standard 8 operator.

Assuming the exactness of the above short exact sequence of sheaves, we expect an exact sequence in
Cech cohomology of the form

H°(X; P x, Hol(k)) — H'(X; GL(k; C)) — H'(X; GL(k; C)c~).
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Here we have principal bundles H(X; GL(k)s) which correspond to holomorphic vector bundles,
i.e. vector bundles with holomorphic transition functions. Then H%(X; P X, Hol(k)) corresponds to

a 8, operator on a smooth vector bundle P, whose kernel selects the “holomorphic sections.”

The bulk of the work for this picture amounts to showing exactness of:
0 — O(GL(k;C)) —» C*(GL(k; C)) — Hol(k) — 0.

Exactness at the left is obvious, since holomorphic functions are a subspace of smooth functions.
Exactness at the center is simply the statement that

gdg' = §ig = d(g'g) = 0.

)
The hardest part is surjectivity. The condition d,s = 0 is an integrability condition which ensures

that we can find g such that 3, = gdg™". For details of the integrability theorem, see Donaldson and
Kronheimer, 2.1.53.

3.9 C(lassification of principal bundles on a 4-manifold

A connected Lie group G is called simple if it is non-abelian, and the Lie algebra g of G has no
non-trivial ideals besides 0, g. For example, U(1) is not simple since it is abelian. More generally,
U(k) is not simple since its Lie algebra contains 1(1) as an ideal. However, SU(k) is simple. The
special orthogonal groups SO(k) are simple for k = 3 and k > 5. Compact simple simply-connected
Lie groups G are in bijection with admissible Dynkin diagrams. Classification of Dynkin diagrams
yields the list of possible groups

G € {SU(k)a Spln(k)’ Sp(zk)a E69 E7’ ES’ F4’ G2} .
The center Z(G) is the subgroup of elements which commute with everything else, and is determined
by
Z(G) = Aweight/Aroot’
which is a finite abelian group.

More generally, any compact simple non-simply-connected Lie group G is the quotient of G by
a subgroup of its center. This subgroup lifts to an intermediate lattice given by the kernel of the
exponential map:

Aroor C ker(exp) C Aweight-

Then Z(G) = Ayeight/ ker(exp), and m(G) = ker(exp)/Aroor are both finite abelian groups.

For example, consider G = SU(k). A maximal torus T C G is the diagonal matrices of determinant
1, which is a copy of U@ c UK. The center Z(G) is isomorphic to Z, consisting of multiples
of the identity matrix e?™/¥I. The Lie algebra t of T is {(01, oo 0,0) R Y P, = 0}. The root

lattice is the kernel of the exponential map, which is the subset intersecting 27Z"*!. The weight
lattice is where the exponential map hits the center, i.e. the intersection of t with

277" 2m/k (L,...,1) Z.
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The group PU(k) := SU(k)/Z(SU(k)) has fundamental group m(PU(k)) = Z(SU(k)) = Z. Note
that Spin(3) = SU(2), and PU(2) = SU(2)/Z, = SO(3).
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Chapter 4

Connections

4.1 Connections on principal bundles

Definition 24. A connection on a principal G-bundle P — X is an element of {A,} € COX;T*X ®9)
which satisfies

Aq = Adg Ag — (dPap) P (4.1)

If p: G — Aut(V) is a linear representation, E = P X, V, and and s € I'(E), then the induced
connection V4s € T(T*X ® E) is well-defined, given by

(VAS)oc = V(sq) + P(Aoc)soc’
where p : ¢ — Lie(Aut(V)) also denotes the induced Lie algebra map.

Example 25. If pg : O(n) — Iso(R"), then in an orthonormal frame, A, is 0o(n)-valued, and hence
an antisymmetric matrix of one-forms. In this case, it is automatically compatible with the inner
product since in I'(Uy; T*X),

(VAs.£) + (5. VA1) = (Vsg ta) + (AaSas ta) + (Sar Via) + (S Aata) = V (Sata) = V (5,1).

Conversely, since pg is an isomorphism, any ordinary compatible connection on the standard associ-
ated vector bundle determines, in any local orthonormal frame ¢, an antisymmetric connection
1-form A, which satisfies the transformation law.

We want to show that connections exist on any principal bundle. This is the done in the same way
that ordinary connections are proven to exist on vector bundles. The key observation is that if V4
and V2 are two connections, and f € C*(X), then f VA +(1- f YVB still satisfies the product rule,
since

FV4gs)+(1—f)VE(gs) = fdg®s+fgVAs+(1—f) dges+(1—f)gVP:s = dg@s+g(fV*+(1—-f)VP)s.

Now we graft together the trivial connections over each U,. Choose a partition of unity 3, f, =1
such that f, is supported in U,. Denote by VA" the connection over U, given by (A7), = 0, s0
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that (VAy)y = V + p(0). Then use the connection };, nyAy, which obeys the product rule since
2y fy = 1. Now let’s determine the formula for A,. First we compute (A”), = Adg, 0 — d%ygb;}l,. Thus

— -1
Ag == nyyd¢ay¢ay-
Exercise: Prove that this A, satisfies (4.1).
Now we know that connections always exist. Now it is easy to classify them.

For any fixed connection Ay, the space of all connections is given by &/p = Ay + Q'(X;gaq), where
9ad := P Xad 8.

Proof: (A = Ag)a = Adg 4(A—Ag)s & A-AgE€ QY(X;8aq)-

Now we want to try to understand how to find distinguished connections on a principal bundle.

Suppose A is a gl(n) connection on Fr(TX). Then the torsion tensor
TAX,Y) := V4Y - V4X — [X, Y].

Fundamental theorem of Riemannian geometry: If X is a Riemannian manifold, then there is a
unique o(n) connection on Fr(TX) called the Levi-Civita connection, denoted by LC, such that
T'C = 0.

Example: Suppose G is a compact Lie group. Then, by averaging, there exists a metric which is
invariant under both left and right multiplication by any g € G, denoted respectively by L, and R,.
We identify any & € g with the left-invariant vector field whose value at g is (L;).§ € T;G. In this
way, the Lie bracket of vector fields corresponds to the Lie algebra. (Using right-invariant fields
would introduce a minus sign into the Lie bracket.) The Levi-Civita connection on G is given by
Ven = 3 [€,17]. Torsion vanishes by antisymmetry of the Lie bracket. Compatibility follows from
bi-invariance, which is equivalent to (x, [£,7]) = ([x. &] , n)-

The convention is to implicitly use the Levi-Civita connection on all tensors associated to the tangent
bundle.

For example, consider a ® s € T'(T*X ® E), and we want to compute V4(a ® s) using some connection
A on the principal bundle for E. We use the tensor representation

pst® p:0(n) x G — Aut(T*X Q E).
The infinitesimal version is
(pst ® Id +Id ® p) : 0(n) ® g — Lie(Aut(T*X ® E)).
Thus the covariant derivative is given locally by
Vo=V+AL®Id+1d® A,
This allows us to define, for instance, the second covariant derivative
(V)% e I(T*X ® T*X ® E).
Most importantly, we have curvature

RA(X, Y)S = (VA)§(®Y—Y®XS = (vay - Vva - V[X’Y])S.
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It is convenient to introduce the operator d4 : QP(X; E) — QP*Y(X; E) defined by Ad,, where
A:T*X ® APT*X — APPIT*X
by the wedge product. Then
RAX, Y)s = (dadas)(X, Y),

and
(das)a =d + p(Ag) A

Defining

[(Gew) A (L®w)] = [8,86] ®w A wy = (-1)F989rd89 (£ @ w) A (§ @ w)]

we compute

dadps = (d + p(Ag)A)(d + p(Ax)A)
= d* + [d, p(A)A] + 3 [P(ADA, p(A)A]
=0+ p(dAg) A +p (3 [A A Ad]) A
= p((FA) )N,
where
(Fa)a = dAg + 3 [Aa A Ag] € Q*(Uss 9).

Some computation shows that F4 does not depend on the Riemannian metric, and it transforms
according to the adjoint representation, so F4 € Q*(X;gaq). It follows that Fo(X,Y) € T'(gaq), so
p(Fa(X,Y)) gives an endomorphism on each fiber, and

(VY3 ey _vexs = RUX, Y)s = (d3s)(X, Y) = p(Fa(X, Y))(s).

For example, on a Lie group G,

RCE My =3 & x)] = [0 [Ex]] = 3 [LEn] . Al = =3 [[En] . x] =ad (-] [E.7]) x-

4.2 Flat bundles

Definition 26. A flat principal G-bundle on X is an element of ZI(X ; Geonst) Whose transition func-
tions are constant.

Theorem 27. If X is connected, then isomorphism classes of flat principal G-bundles over X correspond
to conjugacy classes of homomorphsims m(X)°? — G.

Remark 28. The superscript “op” on m(X) denotes the opposite group, which is the original group
with the order of multiplication reversed. The standard convention for composition of loops in 7;(X)
is that [y1] - [y2] is represented by a path which traces firstly y; and secondly y,, while in 3 (X)°P
the order is reversed, which is more like the ordering in function composition where the rightmost

function is applied first. Any group 7 is naturally isomorphic to 7°P via the map x > x~L.
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Remark 29. Normally it is sloppy to omit the basepoint from the notation (X, x¢) because, while
there are isomorphisms from m (X, x¢) to m (X, x;) induced by homotopy classes of paths from x, to
x1, the isomorphism depends up to conjugation on the chosen path. But since we are interested only
in homomorphisms up to conjugation, the choice of basepoint doesn’t matter (assuming that X is
connected).

Proof. First we construct a map Zl(X; Geonst) = Hom(m (X, x0)°P, G)/conj. Suppose m: P — X isa
flat principal G-bundle. For any continuous path y : [0,1] — X, define Hol(y) € Iso(P|y ), Ply)) as
follows. By compactness, cover the image of y by finitely many Uy, ..., Uy, so thaty : [ti_y, ;] — U,,
forsome 0 =ty < #; < --- <ty = 1. Fori = 1,...,k, define an element 7; € Iso(P|y(,_,), Ply))
according to the rule 7;(p;—;) = p;. Thus (T,-)ﬁ(p,-_l)ﬁ = (pi)a. In particular, (7; g;ﬁ" “(Pic)a, =

xi-1

(Pa; = Pojaisy * (Pi)ajy> 90 (T1)y, " = Paja,_,- Finally, define Hol(y) := 7y 0 74—y 0 - - 0 77, 50 that
HOl(y)g}( = (p“k“k—l(p“k—l‘xk—z t (/)062061 €G.

k
Given a change of trivialization {‘/’ﬂi = ¢aig;1}i:1 so that ¢gg. | = ¢/;_1¢/3i_1 = gida,a,.9; it follows
that ;
Hol(y)g, = gk$uesrTi19k-1Pairas i aFk-2 92 Dr$wandr = GeHOIY) gy

We are interested in the particular case where y is a loop based at x( so that
HOI(Y) € ISO(Ple’P|XQ) = Ad(Plx())’
given by
HOl(y)gi = ¢0610€k ¢“k“k—1¢ak—1“k—2  Payas

which clearly transforms under the adjoint representation. Composition of loops corresponds
to composition of the corresponding sequence of ¢4, , in the right-to-left order of m (X, x¢)°P.
Evidently, small perturbations of y and the {#;} do not change the result. Nor does refinement of the
cover. Finally, any homotopy of y can be covered by finitely many U, such that the initial path and
final path are related by a sequence of refinements. Thus Hol, descends to a map m (X, x9)°? — G.
It is straightforward to verify that this map is a homomorphism, and that change of trivialization by
{9} acts as conjugation by g,'. Thus the desired map is well-defined.

To perform the inverse of the above construction, for some homomorphism, consider an open cover
{Uy,} such that

1. each U, is simply-connected,
2. each U,g is either empty or connected,
3. for each a, there are choices of both a basepoint x, € U, and a path y, from x to x,, and

4. it xy € Uy, then x4 = x¢ and y, is chosen to be the constant path.

For each Uyg # 0, consider the element [ya[;] € m(X, x0)°P represented by the following construction.
Starting from xo, follow y, to x,. Then choose a path inside U, U Ug from x, to xg. Then follow the

49



reverse of yg back to xo. The resulting homotopy class is independent of the choice of path from x,
to xg, as a consequence of 711 (Uy U Up) = {1} by the Seifert-van Kampen theorem. (The difference of
any two chosen paths is a loop, which is nullhomotopic.) Furthermore, if xo € Uy N Up, then yugs

remains inside U, U Ug, and so [ya/;] =1
Given any homomorphism 4 : m(X, x9)°® — G, we construct a corresponding flat bundle as follows.

Define a bundle by the transition functions ¢op := h ([ya/;]) when Uyg # 0. To verify that this
determines a bundle, we must check the cocycle condition that

-1
¢0¢10¢2¢a3o¢2¢a3“1 =e

when Uy a,a, # 0. It suffices to show that if Uy a,e, # 0 then [You,| [Vagas] [Yasey] = €. By
cancelling the paths y,, and y,, with their reverses, and changing basepoint to x,, along y,,, this class
is represented by a loop from x,, to x4, to x4, and back to x,, which is contained in Uy, U Uy, U U,,
which we seek to show is nullhomotopic. This will follow from the fact that U, U Uy, U Uy, is
simply-connected. To see why, note that (U, U U,,) N Uy, is connected since

(U(Xl U UO{z) m U0£3 = UOt1(X3 U UOC2063

is the union of connected sets whose intersection Uy, a,4, is nonempty. Thus by another application
of the Seifert-van Kampen theorem, 7 ((Uy, U Uy,) U Uy;) = {1}. Therefore ¢, defines a cocycle.

To verify that this is an inverse to the previous map, consider any loop y based at x¢. Cover y as before
by Uy, ..., Uy with ty, ..., t; as before. We express [y] in terms of the [ya/;] as follows. Without
changing the {U,,} or the {t;}, it is possible to homotope y to pass through x,,, . .., X4, . Noting that
[ydklxl] = e since xo € Ulele’ we have Y= [ydlak] [yka‘xk—l] T [ymvéz] [yaz(xl] . Thus

Hol([yD)it = B ([Yares | ) 7 ([Yewess]) -+ 7 (Wasaa]) - B ([yazen])

=h ([)’txlock] [Y“k“k—l] e [Yasa ] [Y“Z"‘l])
= h([yD).

so the holonomy reproduces the given homomorphism, inverting the construction as desired. O

4.3 Flat connections

Note that any flat principal G-bundle has a canonical connection given by {A, = 0}.

Exercise 30. Verify that {A, = 0} defines a connection on a flat bundle. Show the converse is also
true: if {A, = 0} is a connection on a principal G-bundle, then that bundle must be flat.

Definition 31. A connection A is said to be flat if F4 = 0.

This definition is justified by the following theorem.

Theorem 32. If P — X is a smooth principal G-bundle, then a flat connection A determines a reduction
of P to a flat principal G-bundle.
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Since two reductions are equivalent iff they are related by a gauge transformation g € €p = I'(X; Ad P),
the previous two theorems establish a bijection between

{A| A€ dp, Fs =0} /%p «— Hom(m(X), G)/conj.
From the theory of reductions, in order to prove Theorem 32} it suffices to prove

Theorem 33. For any open V C R", and for any x € V, there exists U C V such that x € U and
0> G— C®(U;G) - Flatg(U) - 0

is exact, where Flatg(U) = {A e ONU;q) | dA + % [ANA] = O}, and the map C*(U; G) — Flatg(U)
is defined by g — —(dg)g ™.

The only nontrivial part of Theorem [33|is surjectivity of g — —(dg)g ™. A change of trivialization by
g then transforms such a connection to the trivial connection A = 0.

The case n = 1is already mildly interesting. Note that since two-forms vanish automatically in one
dimension, all connections are flat, so Flatg([0,1]) = Q'([0,1];g). In particular, if A = —y(¢) dt, then
we seek a map g : [0,1] — G such that

dg

_— -1 =
ar? x®).

Such a g exists by

Theorem 34. For any Lie group G and smooth map y : [0,1] — g, there exists a unique function
OE[x] : [0,1] — G such that OE[x](0) = e, and

d
d_f = (Ry(r))«x (),

where R; denotes right-multiplication by g, and (Ry)« : ¢ = T,G — TG is the pushforward map.
Furthermore, OE[y] is smooth, and depends smoothly on y. The general solution is OE[x]go for
arbitrary go € G.

Thus

d
EOE[X] = x(t)OE[x].

This construction will allow us to define a holonomy map for a general connection A, not necessarily
flat.

First note that for f : Y — X, there is a nicely behaved pullback principal bundle f*(P) — Y, and
corresponding pullback connections f*(A) such that f*(F4) = Fp+(a).

Definition 35. For smooth y : [0,1] — X, define Hol(4,y) € Iso(Ply(o), Pl,@)) by the following
procedure. Consider the connection y*(A) on y*(P) — [0,1], which is flat. Pick an arbitrary
trivialization ¢, of y*(P) in which y*(A) is represented by —y(t) dt € Q([0,1] ; gaq). Then change the
trivialization to ¢g = ¢,OE[x(£)], so that y*(A) is represented by 0 in the trivialization ¢g. The fibers
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¢p(0) and ¢p(1) are identified with P|,o) and P|,(;) respectively. Define Hol(4, y) := ¢ﬁ(1)¢ﬁ(0)—1 €
Iso(Ply(0), Ply)-

This is well-defined since any other trivialization in which y*(A) = 0 is given by ¢sgo for an arbitrary

constant go € G, and ¢p(1)go ((;5[;(0)g0)_1 = ¢p(1)¢p(0)~". It’s easy to show that this extends the
definition of Hol([y]) for flat bundles via a subdivision argument.

We would like to show that when Fj is flat, then Hol(4, y) is independent of homotopy of y. Assuming
Theorem [34} the result follows from the case where X is a square.
Lemma 36. Consider A = A;(t,s)ds + Ay(t,s)dt € Q1([0,1] X [0,1];9). There exists a change of
trivialization g in which the connection is A" = A(t,s) ds + 0 dt such that

« 9(0,5) = ¢,

° All(09 S) = Al(()’ S))

o« Fy = ZA\(t,s)dt Ads.
In particular, if Fy = 0, then A’ is independent of t and of the form A\(s) ds.

Proof. Consider g(t,s) = OE[ty = —Ax(to, s)](t). It’s evident that g(0,s) = e. A change of trivializa-
tion by g is equivalent to a transition by g~1. The ds component of A’ is

s og" 09 _
Al=g Ay - ——g=g 2= +g Ag.
Restricted to s = 0 we have g = e and g—f = 0, and thus A{(t,0) = A;(¢,0).

Similarly, the dt component of A’ is, applying the differential equation for the ordered exponential,

0 _ _ _
g 18—“;] +g 'Ayg=—g 'Axg+g ' Arg = 0.

It follows that A” = A/(t, s) ds, and consequently
9 .
Fy = EAl(t,s) dt Ads.

Since Fyr = g‘lFAg, it follows that if F4 = 0, then F4» = 0, and so A;(t, s) is independent of ¢. |

Corollary 37. Suppose F4 = 0. Then Hol(4, y) is independent of enpoint-fixing homotopies of y.

Proof. Suppose y; : [0,1] — X is a smooth homotopy for s € [0, 1] which fixes the endpoints. Then
y*(A) is a connection on [0, 1] X [0,1] which, in a general trivialization ¢, over [0,1] X [0,1] has
the form Ay(t,s) ds + A(t,s) dt. The fibers of y*(P)|;=o are identified with the single fiber P|, (o),
and similarly the fibers of y*(P)|;=1 are identified with the fiber P|, (;). It's easy to arrange that ¢, be
constant when restricted to both t = 0 and ¢ = 1. Since y is also constant on this set, this implies that
both A;|;=9 and A;|;=; must vanish. Applying Lemma we can change the trivialization by some
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g = g(t,s) so thatin ¢g = ¢, - g with the hypotheses of Lemmasatisﬁed. It follows that ¢g, = g~".
Let A’ denote A transformed to ¢g. Then A” = A} (s) ds. Since the df component of A’ vanishes, A’
pulls back to [0, 1] X {s} as zero, and hence

Hol(ys) = ¢p(1,5)¢p(0,5) 7"

It remains to show that this is independent of s. Since gl;=o = e, it follows that ¢gli=0 = ¢ali=0 - €
which is constant. Since Ay|;=o = 0, it follows that A(s) = A/(s,0) = Ay(s,0) = 0, and thus A’ = 0.
Finally, it follows that A = —(dg)g~". Using the fact that 0 = A;|;; = —g—f g Y=, it follows that gl
is constant. Thus ¢gli=1 = ¢agli=1 is constant since both ¢, ;=1 and gl;=; are constant. O

Corollary 38. If P — X is a principal G-bundle with flat connection A, and if X is simply-connected,
then there exists a trivialization ¢ € T(X; P) such that the connection form ¢*(A) is 0 € QN(X;g).

Proof. Choose xy € X and ¢ € P|y,. Define

¢(x) = HOI(A’ Y)((/’O)»

where y is any choice of path from x, to x. Since A is flat, the result does not depend on the homotopy
class of y. Since X is simply-connected, there is a single homotopy class, and this map is well-defined.

Consider ¢*(A). Pulling back further to any path y : [0,1] — X, this gives the zero connection
form on [0, 1]. Now A must itself be zero, since otherwise there would be some vector on which A is
nonzero, and hence some path representing it which would pull back to something nonzero. ]

It remains only to prove Theorem

Lemma 39. Fix an arbitrary inner product on g. There exists € > 0 such that if y : [0,1] — g is
continuous and satisfies |x(t)| < €, then there exists a unique continuous g : [0,1] — G such that

g9(0) = eand %g'l = x, which depends smoothly on y.

Remark 40. The notation “%” means g.(d;) € Ty;)G. Then “%g‘l” means (Rg_1)>k (%) e T,G = g.
Proof of Theorem 34 assuming Lemma[39 The idea is to rescale Theorem 34]so that the hypotheses
of Lemma [39]are satisfied. For m, M € Z with 0 < m < M, let x,p : [0,1] — g denote the function

XmMm(t) = x((t + m)/M)/M. Assuming that OE[y] exists for all y, it must satisfy

OE[x]((t + m)/M) = (OE[xmm1(£)) (OE[Xm-1,m](1)) - - - (OE[x1,m](1)) (OE[xo,m](D)) ,

since both sides satisfy the same differential equation for all m, M, and t € [0, 1], and respect the
continuity of OE [x]. By choosing M > max; [x(t)| /e, it follows from Lemma[39| that the right hand
side exists, is unique, and depends smoothly on y. Therefore OE [ x| exists, is unique, and depends
smoothly on . m]

Proof of Lemma[39 The strategy is to apply the Banach fixed-point theorem in some coordinate
chart. Fix some number1 < r < 1+ %. Let B,(e) denote an open ball around e € G which

is identified with an open ball of radius r in R? where d = dimG. Let V : g x B,(e) —» R4
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denote the components of the right-invariant vector fields. Thus if y € g and the right-invariant
vector field XR has components (XR)l, e, (XR)d in B,(e), then for x € B,(e) we have V(y,x) =
(( XR)l(x), R { XR)d(x)). The coordinate version of the desired differential equation is thus

d
2O = V(.90 g(0) = 0.

Integrating, any solution to this differential equation gives a solution to the integral equation

t
g(t) = /0 Vx(to). g(to)) dto,

and is thus a fixed-point of the operator

t
L(g)(t) = /0 V(x(to), g(to)) dto.

Existence and uniqueness of a solution will then follow by showing that I' is a contraction mapping
on the appropriate function space.

For A > 0, let B)(0) C g denote the open ball |y| < A. By compactness of B;(0) X Bj(e), it follows that
the restriction of V has
V] +|VV]| <L

for some L € R. In particular,

1
|V(X(t),)’) - V(X(t),x)| = ‘A Vy—xV(X(t), (1 _ s)x + 5)’) < Lly _ X| ’
[V(x(t),x)| < Llx|.

Note that since V(Ay, x) = AV (y, x), it follows that on the restriction of V' to g X B,(e), we have

V(x(®),9) = V(x®), %) < L|x®|ly -,
[V (x(1), x)| < LIx(®)] x|

Now take € < 1/3L, so that |y(¢)| < 1/3L, and

[V(x(1).y) = V(x(1),%)| < 5 ly —xl,
[V(x@),x)| < 3 1x].

We use this estimate to construct a fixed point on the following space. Consider the vector space
% ([0,1]; R¥) of continuous maps g : [0,1] — R?. This has a norm given by ||g|| := max; |g(¢)|. This
norm is always finite by continuity and compactness of [0, 1]. Furthermore, all Cauchy sequences
converge, meaning that if {g;};_, satisfies ||g1~ - g]-” — 0 as min(i, j) — oo, then lim;_, g; exists and

is continuous. This gives € ([0,1] ; R?) the structure of a Banach space.

Let By denote the unit ball in €([0, 1] ; R?), which is the space of continuous functions from [0, 1]
to the unit ball in R¥. We will show that the operator I' defines a contraction mapping I' : By — Bg.
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In order for I'(g) to be well-defined, it'’s important that g € Bg so that V(x(t), g(t)) is well-defined
and satisfies the bounds. Its image is in By since

1
W@X@kslIVuULmﬂﬂm<%,wHHwH<é

Furthermore, I' is a contraction mapping, meaning that it reduces distance by at least some fixed
factor:

’

1
[T(g2)(t0) — T(g1)(t0)] < /0 V(x(1), 2(1)) = V(x(£), ()] dt < 5]lg2 = o1

$0
IT(g2) = T(gll < 3 llg2 — anll -

Now we employ the Banach fixed point theorem. Consider now the sequence {0, I'(0), ['(T'(0)), . . .}.
This is Cauchy since

ri(O) _ I‘j(o) < (l)mini,j I~|i—j|(0) —oll < z(l)mini,j 0.
3 3

Thus there exists some continuous limit go. This limit g, is easily verified to be a unique fixed point
['(goo) = goo- Thus g, satisfies the integral equation

t
gdwavmmgammw

Differentiating, one finds that

dgoo _
— (0 = V(1) g=(0)),

_d2g°° (t) = a_Vﬂ + G_Vdg_""
2~ 9y dt 0dg dt
_ovdy oV

= a " + ﬁ_gV(X(t)’gw(t)).

Continuing to differentiate, we observe that the higher-order derivatives of g, can be expressed in
terms of the higher-order derivatives of V' and y. Thus if V and y are smooth, then 50 is geo, and goo
depends smoothly on y. ]

4.4 Matrix groups

All compact groups G can be realized as a matrix group. In particular, for any G, there exists some
integer N and a faithful (injective) representation p : G — GL(N; R). There is the associated vector
bundle E := P x, RN which comes equipped with a natural embedding

P c Fr(E),
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givenby ¢ — ([¢,e1],..., [d.en]).

From p there is an associated representation pg; : G — GL(N X N; R) which acts on an N X N matrix
M according to

pai(@) - M = p(g)Mp(g)~"
= gMg~,

where in the last line we have left p implicit.

The associated vector bundle is gI(E) = P X, RN*N_ whose fibers are endomorphisms of the fibers
of E. There is a fiber subbundle GL(E) C gl(E) consisting of the invertible endomorphisms. Finally
there is Gag € GL(E), which describes the automorphisms which preserve P in each fiber, which is
fiberwise a copy of G. The fiberwise Lie algebra is thus naturally a subbundle of gI(E). Thus

Gad C GL(E) C gl(E),
gad C gl(E).

The infinitesimal version of py : ¢ = GL(N X N; R) is given by

pat(x) - M = p(x)M — Mp(x)
= xM - My,

where again the last line leaves p implicit.

4.5 Gauge transformations and stabilizers

Suppose P — X is a principal G-bundle, where G is compact. Automorphisms of P are given by
elements of &p := I'(X; Gaq). There is a natural induced action

Vga:= gVag™h.

We wish to understand the space Bp := /p/Ep, the space of orbits. The first thing to understand is
a single orbit &p - A. Next we understand the neighborhood of a single orbit. Finally, we will survey
the global topology of %p.

The key to understanding a single orbit is

Definition 41. For any connection A € fp, its stabilizer Stab(A) C Epis{g€ Ep | g- A = A}.

The structure of a single orbit &p - A is determined by €p - A = &p/Stab,. Thus we wish to understand
solutions to g - A = A. For this, we need to find a formula for g - A.

Viewing g as a Gag-valued section of I'(X; gI(E)), and leaving p implicit, we compute in U, that

(9V497"), = 9a(V + Ad)g;
=V + gahady — (V92)9,".
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Thus
(6] “A)g = gocAocg;I - (Vgoc)ggla (4.2)

which is the same formula as a change of trivialization of A by g;'.
It’s possible to get a more invariant formula without passing to a local trivialization:
gVag " =Va— (Vag)g .
Thus
g-A=A—(Vag)g™',

andsog-A = Aiff
0=g-A-A=—(Vag)g' € Q'(X;8aa).

To reconcile this with (4.2)), note that
(VAg)(x = Vgoc + PgI(Aoc)goc = Vgoc + Aagoc - gaAoca

and thus
(—(Vag)g Do = —Aa + gahagy' — (V9a)9, .
Remark 42. Identitying ©p with the corresponding Gag-valued sections of gI(E),

Stab(A) = {g € ©p | Vag = 0}.

If g is a solution to V4g = 0, then it is connected to holonomy. If y is any path from x to x;, then in
the holonomy trivialization ¢ : [0,1] — y*(P), we have ¢*(A) = 0, and

g(y(1)) = Hol(A4, y)g(y(0))Hol(A, y)_l. (4.3)

Definition 43. For a given basepoint xy € X, the holonomy subgroup Hol(A)x, C Gadly, is the image
of Hol(A4, y) over all loops y based at xy.

Definition 44. Given a subset of a group S C G, the centralizer of S is denoted
Zg(S) := {g €Glg= sgs_1 Vs € S} .

Note that Z5(G) is the center Z(G).

Theorem 45. The stabilizer of any A € dp is the centralizer of the holonomy subgroup. More precisely,
if X is connected, then for any xo € X, then there is an isomorphism

Stab(A) = Zgy ., (Hol(A)y,)
given by g — g(xo) € Gadlx,-

Proof. Suppose g € Stab(A). First we must show that the restriction g(xo) € Zg, alxg (Hol(A)y, ). This
follows directly from applying to any loop based at xy. Thus g(xo) is fixed by paq(Hol(4, y)), so
g(x0) € Zg,, IXO(HOI(A)xo)' Conversely, if g(xo) € Zg,, IXO(HOI(A)xo)> then

g(x) == pad (Hol(A, y)) g(xo)

for any choice of y from xy to x is a well-defined unique solution to V»g = 0. m]
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Thus we see that Stab(A) C ©p is isomorphic to a finite-dimensional subgroup of Gaqly,. Moreover,
this subgroup is a centralizer. This is a very strong constraint.

Theorem 46. If H C G is a centralizer subgroup, and Z denotes the center of G, then Z C H.

Theorem 47. The only subgroups of SU(2) which arise as centralizers are isomorphic to Z,, U(1), or
SU(2).

Proof. Centralizer subgroups are the intersection of the centralizers of single elements. The centralizer
of £Id,x; is SU(2). for any 6y € (0, m),

it ei0
Zsu(2) . o6 [0 e R} =U®).

Thus the centralizers in SU(2) are intersections of U(1) subgroups. But the intersection of two or
more distinct U(1) subgroups is Z5. |

Definition 48. If Stab(A) = Z(G), then A is said to be irreducible. Otherwise, A is said to be reducible.

Example 49. If G = SU(2) and Ay is a trivial connection V4, = V + 0 on the trivial bundle, then
Hol(y)x, = {e}, and Stab(A) = SU(2) consists of all constant gauge transformations.

Lemma 50. IfS C T then Zg(T) C Zg(S). Also, S € Zg(T) < T c Zg(S).
Corollary 51. S C Zc;(Zc;(S)), and ZG(S) = ZG(ZG(ZG(S))).

Thus Zg is an involution on centralizers.

For example, when G = SU(2), the centralizers are
Z, c U(1) c SU(2),

and Z¢ exchanges Z, and SU(2), but fixes U(1). Note that there is actually an RP? worth of conjugate
U(1) subgroups, each of which are fixed by Z.

Corollary 52. If A is reducible then Hol(A)|y, # G.

Proof. Suppose Hol(A)|y, = G. Then Stab(A) = Zg(Hol(A)lx,) = Zg(G) which is the center Z(G).
This implies that A is irreducible. ]

Remark 53. It can be that A is irreducible but Hol(A)|,, # G. For instance, if G = SU(2) and
Hol(A)|y, is any non-abelian proper subgroup, then Hol(A4)|,, ¢ U(1), so Stab(A) ? Z5(U(1)) = U(1),
so Stab(A) = Z,.

If Hol(A)lx, # G, then holonomy defines a natural space of reductions to H = Hol(A)|, parameter-
ized by Gagly,/H, and A descends to this reduction.

Remark 54. Suppose G is simple and A is reducible with Stab(A) = G, Then Hol(A)|,, C Z(Stab(4)) =
Z(G), so A comes from a connection on a Z(G)-bundle. Since the center is discrete, Lie(Z(G)) = 0,
and thus A must be flat.
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Remark 55. Suppose A is a connection in a principal SU(2) bundle, and Stab(A) # Z,. Then by the
classification of centralizers, Stab(A) = U(1) or Stab(A) = SU(2). In either case, Stab(A) > U(1), so

Hol(A)lx, € Zg(Zg(Hol(A)lx,)) = Zg(Stab(4)) € Zg(U(1)) = U(1).

IfE = P X, C? choose a frame {e;, e,} for Ely, in which holonomy is of the form

i0
Hol(A)|y, C {(60 ef),.e) 16 € [R}.

Consider the parallel transport of e;. Thanks to the holonomy, parallel transport along any loop takes
e; back to a multiple of itself. Thus parallel transport spans a subbundle L of E. Similarly, parallel
transport of e, spans a complementary subbundle L. Thus E = L @ L’. Being an SU(2) bundle, the
determinant bundle A2E must be canonically trivial, so A’E = C. (Equivalently, the fibers of E are
equipped with a skew-symmetric bilinear form.) If E= L& L/, then A’E = L® L', so L’ = L\,

Suppose abstractly that some group & acts smoothly on some space &/, and we wish to understand
the orbit space & := & /€. Of course the context will be &€ = &p for some principal bundle P, and
9 = dp, but for now, let’s think of these as finite-dimensional spaces. Given some A € & with
some stabilizer, we wish to understand a neighborhood of [A¢] € ZB. The idea is to construct in
some manner a small “slice” §4, C & which transversely intersects the orbit O4, := & - Ay through
the point Ag. In particular, we want

TAOQY = TAO@AO @& TA0§A0~

Assume that the action of & on & restricts to an action of Stab(4¢) on §4,. The desired description
of a neighborhood of [A¢] in 9 is given by the quotient §4,/Stab(Ay). This follows directly from
the key lemma that

m: (& x Sy,)/Stab(Ag) — ,
m(g,A) =g-A
is a &-equivariant diffeomorphism onto its image.

To see why this should be a local diffeomorphism, consider the linearization of m at (e, A). If this
linearization is an isomorphism, then it follows by the inverse function theorem that m is a local
diffeomorphism in a neighborhood of (e, Ag). It's important that the slice §4, be chosen to be small
enough so that the inverse function theorem will apply to a much larger region. The linearization is

deagym : (ToGp @ Ta,Sa,) /TeStab(Ag) — Ty, Ap
de.aym(x,a) = x - Ao + a.

Recall now that the restriction of the action to & x {A(} gives a diffeomorphism from & /Stab(A) to
Oy, This induces an isomorphism

T,% | T.Stab(Ag) — Ta, O,

Thus
Im(d(e,Ao)m) = TAO@AO + TA0§A0~
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Under our assumption about the slice,
d(e,Ao)m 1T, Ony ® TaySa, = Tayd

is an isomorphism. Indeed, there is some neighborhood U C & of e such that the neighborhood
of (e, Ap) can be chosen to be a product neighborhood U’ X &§4,, where U’ = U - Stab(Ay). By
& -equivariance, it follows that m is a local diffeomorphism from ((U” - g) X $4,) /Stab(A,) to a
neighborhood of g - Ag forallg € @.

We wish to show that m is not just a local diffeomorphism, but an actual diffeomorphism onto its
image. Thus we need to show that it’s injective. This requires choosing §4, to be small enough such
that §4, and g - 84, intersect only when g € Stab(Ay).

Ifit’s not possible to choose 4, small enough, then there exist sequences {g; € £\U’} and {A; € S4,}
such that g; - A; € §4,, and both A; — Ay, and g; - A; — Ap. Assuming that it’s possible to pass to
some convergent subsequence, then g; — g with g - Ag = Ay, thus g € Stab(A4,). But Stab(4,) is in
the interior of U’, which is a contradiction.

Now we consider the case & = @/p and & = Gp. Given A € o/p, we wish to understand the tangent
space to the orbit ©0,. This is determined by the map p — o/p givenby g = g-A¢ = Ag—dag. Since
©p = Q%(X; Gaq), the Lie algebra is Q°(X; gaq), and the linearization T,%p — Ty, p, or equivalently
Q°%(X;gaa) — QN(X;gaa) is given by

X _dAo X-

Thus
Ta, 04, = Im(da, : Q°(X;9a4) = Q' (X;0aa))-

We seek a complementary subspace

TAeri = TAO@AO D TAOCS)AO’
O!(X;aaq4) = Im(dy,) ® C.

The easiest way to construct such a subspace is to choose a Riemannian metric on X and an invariant
metric on g to define an inner product on O(X; gaq) by ({&, B)) := [y {a - B), dvol, and define

C := Im(da,)*.
There is a good way to characterize C as follows. If & € C, then for all f € Q%(X; gaq),
0= (o da,B)) = ((d3,x.8)).

where djxo : QY (X5 8pa0) = Q°(X;8aq) is the formal adjoint. Unlike dy,, the operator d;;o depends
on the choice of Riemannian metric. It is determined by integration by parts. The only way for
0 = ((d; . p)) forall Bisif d; a = 0. Thus Im(dy,)* = kerd; . Thus

Im(ds,) ® ker(d;,) € Q'(X; 0aq)-

It’s not at all obvious whether or not this is an equality. There is no simple procedure for decomposing
a general element of QN(X;gaq) as such a sum.
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More generally, given a differential operator D : I'(E) — I'(F), and its adjoint D* : I'(F) — T'(E), we
wish to know when it is possible to write

['(F) = Im(D) & ker D*.

This is certainly not always possible. Consider the zeroth order differential operator D : Q°(S') —
Qo(sh given by multiplication by (Df)(0) := f(0)sin 0. It’s clear that D = D*, and ker D* = {0} is
the space of all smooth functions on S! which vanish except when 6 = 0 or 6 = 7. However, Im(D)
is the subspace of functions which vanish at 6 = 0 and 6 = 7. In particular, the constant function
f(0) = 1is missing from Im(D) & ker D*.

There is a class of operators called elliptic. D is elliptic iff D* is elliptic. If D is elliptic, then ker D
is finite-dimensional. In this case, there is a finite Gram-Schmidt process which writes I'(F) =
(ker D*)* @ ker D*.

This situation is reminiscent of the Hodge decomposition
OF(X) = Im(d : OP(X) = Q(X)) @ ker(d"Q (X) — QF'(X))
= Im(d" : Q"(X) - Q(X)) & ker(d : Q(X) - QP (X))
=Im(d : O’ 1(X) » (X)) @ Im(d* : X*T1(X) - QX))@
@ ker(d +d* : OP(X) - &P*(X) & QP (X)).

Consider a principal U(1) bundle P. Since U(1) is abelian, the adjoint action is trivial, and Gaq =
X x U(1), and gag = X X V-1 R. Given any Ay € 9/p, we have o/p = Ay + V=-10°(X).
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Chapter 5

Hodge decomposition

5.1 Hodge star

Let X be a closed oriented Riemannian #-manifold X. Consider the de Rham cohomology H*(X; R)
defined by
kerd c Q%(X)
imaged
We wish to find a natural subspace #* c QF(X) such that 7% =~ H*(X; R) via the map  — [w]. In
other words, we want to trade our quotient space H*(X;R) for a subspace #°*.

If V is a finite-dimensional Euclidean vector space, and if W c V is a subspace, then we can naturally
represent the quotient V/W by W+. Specifically, each coset in V/W intersects a unique vector in
W+, so we get an isomorphism W+ — V/W by v  [v]. Of course W+ is not the only subspace
with this property.

Definition. A subspace S C V is called a slice for the quotient V /W if the quotient map restricts to
S as an isomorphism.

The idea of the Hodge decomposition is simply to imitate this construction in the infinite dimensional
setting of de Rham theory.

The first ingredient we need is an inner product on O (X). For this, consider R" equipped with the
standard SO(n) structure, i.e. the standard Euclidean metric and orientation, so that {el, e e”} is

an orthonormal basis. We define a Euclidean metric on A’R" by declaring et A - - - A e” to be an
orthonormal basis. More invariantly, one can define

<vl/\.../\vp,w1/\---/\wp> = det<vi,wj>,

and the right hand side is clearly invariant under O(n). (The actionisv; A -+ Av, = gup A -+ A gup.)

We can define a map on the exterior powers of R” by x : A’PR" — A"PR" characterized by the
relation
aA*B={(a,B)e A---ne
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This characterization is clearly invariant under SO(n), and one computes that
*(eil/\---/\eik) :ie’TI/\.--/\eZ”‘P,
where i denotes the indices complementary to i, and + is determined by
EUA AR AT A At = el Ao A eh,

One verifies that
*x2 = (-1)PP) . APR™ — APR",

Furthermore, x encodes the orientation and metric via the identities
*x1=¢e' A---Ae",

(a, B) = *(a A %) = *(B A *a).

The Hodge star map is equivariant under SO(n), i.e. *(ga) = g(*«). For any vector space V equipped
with a reduction to SO(#n), i.e. V is equipped with an orientation and a Euclidean metric, the Hodge
star determines a map % : A’V — A"PV, where

APV = Fri9(V) x, APR".

Of course this also makes sense for any principal SO(n) bundle. Suppose X is a smooth n-manifold
equipped with a reduction of the cotangent bundle T*X to a SO(#n) structure, i.e. X is oriented
Riemannian. (A Riemannian metric determines an isomorphism TX — T*X, so reductions of T*X
or TX are equivalent.) In particular, x induces a bundle map APT*X — A" PT*X. Differential forms
are sections OP(X) = ['(APT*X), so we get a map x : QO (X) — Q" P(X) which acts fiberwise.

Finally, we define a Euclidean inner product on QF(X) (p-forms with compact supports) by

(x-[a’::/x(x/\*[)’.

Define
d: P (X) - QP Y(X),
d o = (-1)" P 5 d % .
This satisfies (4*)* = 0 as a consequence of d> = 0 and x? = +1.

Theorem. The operator d* is the formal metric adjoint of d, i.e. up to a boundary term,
(da, B) = (&, d"B).
Proof. Suppose a € QP71(X) and € OP(X). Then
daA*B) =da A*B+ (1P aAdx B =dan*p—an*dp.
Integrating, we obtain
/ aAxB=(da,p)—{a,dp).
0X
Whenever the boundary term vanishes (e.g. if X is closed), we have (da, ) = (a, d*3). O
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Now let’s return to representing cohomology classes on a closed manifold. To find a slice for
ker d /image d, we want to consider

(image d)* C kerd c QP(X).
We have that
a € (imaged)" « VB, 0 ={(a,dB) ={(d*a,B) & a € kerd".
Since we want to look at the kernel of d* inside the kernel of d, we are led to study
HP(X) :=kerd Nkerd* c QP(X).

There are a few alternative characterizations. Note that #Z?(X) = ker(d & d*) = ker(d + d*), since
d+d*: QP - P @ QP For the other characterization, define the Hodge Laplacian

A:=(d+d")?:=d%+dd* +d*d + (@)
Over R" with the standard metric, A on Q°(X) is given by
n 2
0
=2l
i=1
(The minus sign is the geometer’s convention, which makes A act positively on e/** - £2¢/¢*))

Note that A is formally self-adjoint, since up to boundary terms,
(o, AB) = (a,(d +d*)d +d")B) =((d" +d)a, (d +d")B) = (Aa, B) .

Clearly
a e XPX) = (d+dHa=0 = Aa=0.

But conversely,
Aa=0 = (a,Aa) =0 = {((d+d)a,d+d)a)=0 = d+d)a=0 = a e X X).
For this reason, #7(X) is called the space of harmonic p-forms.

We wish to form the decomposition

Q(X) = (image A) ® (image A)* (5.1)
= (image A) @ (ker A")
= (image A) & Z?(X).

We can further decompose image A C (image d) + (image d*). It is a simple exercise to verify that
the images of d and d* are orthogonal, so we obtain the orthogonal decomposition

(X)) = dOPV(X) @ d* QP (X) @ 7P (X)

known as the Hodge decomposition.
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Unfortunately the previous argument was not rigorous, and requires substantial effort. What’s wrong
with it?

The problem is the first line of . Consider the operator m, : C*([-1,1]) — C*([-1,1]) given
by (m,f)(x) := xf(x). The image im(m,) is the set of smooth functions which vanish at x = 0. The

orthogonal complement im(m,)* is the set of functions g such that f_ll x f(x)g(x)dx = 0 for all
f € C* ([-11]). This implies that x g(x) = 0 for all x. By continuity, this means that g(x) = 0 for all
x. Thus im(m,)* = {0}, and

im(my) @ im(m,)* ¢ C¥([-1,1]).

We must rule out the possibility that (image A) @ (image A)*+ ¢ QP(X).

5.2 Hodge decomposition for elliptic operators

Let E » X and F — X be vector bundles over a closed Riemannian manifold X. Consider a
linear differential operator D : I'(E) — I'(F). Whenever E and F are equipped with inner products,
there is another linear differential operator D* : I'(F) — I'(E) called the formal adjoint. It satisfies
((Dsy, 52)) = {{(s1, D*s,)), where s1, s3 € T'(E), s, € I'(F), and ({s1, s3)) := f (s1, $2) dvol. Also, D** = D,
and ker D* = (imD)*. We wish to show that

I'(F) = im(D) & ker(D"),
I'(E) = im(D") @ ker(D").

This will not hold for all D, but it holds for a class of operators D called elliptic. Before giving the
definition of an elliptic operator, we note that if D is elliptic, then ker D is finite-dimensional, and D*
is also elliptic. Thus the above two decompositions are equivalent under D — D*, and the kernels
have finite dimension.

The problem we wish to solve is as follows. Suppose D is an elliptic operator. Given any s € I'(F),
we wish to write s = s; + Dsy with D*s; = 0. The procedure is as follows. Since ker(D*) is finite-
dimensional, a finite Gram-Schmidt process writes s = s; + s, with D*s; = 0 and s, L ker(D*). Then
it suffices to show that for any s, L ker(D*), there exists a solution to the equation Dsy = s,.

The decomposition
PP (X) = dOP V(X)) © d*P(X) @ P (X)

is then a corollary of the simple facts that
o Ais elliptic,
o A=A

o HP(X):=kerA,

im(A) = AP Y(X) @ d*QOPH(X).
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Definition 56. A smooth differential operator D of degree d is a map D : I'(E) — I'(F) which in local
coordinates has the form

D= Z al(x)d,
|I1<d
where the a’(x) are smooth functions with values in Hom(E|,, Fl,),and I = (i, ..., I) isa multiindex,

so that 0y = J, - --dy, and |I| = k. Specifically, given local frames {ea}';:1 and {fb}izl of Eand F
respectively, we can locally write s € I'(X; E) as s = Zﬁ:l s%(x)e, for smooth scalar functions s?(x).

Then
Ds= " a0} @s" ) fi.
lal<d i,j
Example 57. A connection A defines a smooth differential operator V4 : I'(E) — I'(T*X ® E) of

degree one.

Differential operators have complicated transformation laws, generalizing the transformation law
of a connection. However, the transformation law for the highest order part is simple. For local coordi-
natesxy, . . ., X, on X, there are corresponding local coordinates on T*X given by (xi, ..., Xy, p1, - - - » Pn)s
where p; are the coordinates dual to the dx’.

Definition 58. The principal symbol of a smooth differential operator D : I'(E) — I'(F) of degree d
is the map o(D, x, p) : T; X — Hom(El|y, F|x) given by

o(D,x,p):= Y a(x)pr

\I|=d

The principal symbol is well-defined, since under change of coordinates and change of trivialization,
the corrections are of order d — 1 and lower. It is similar to the Fourier transform since it replaces
differentiation by multiplication.

Example 59. Consider the operator d : QF(X) = QF(X). The symbol is
o(d,x,p) =p Ae: AFTIX — AT X,

To understand why, .
dw = d(wp) Adx' = dx' A (0;wp) dx!,

soo(d,x,p) =dx'piANe=pAe.
Example 60. The principal symbol of V4 is the map o(V4, x,p) : Elx = Ty X®E|, givenby s = p®s.

Definition 61. Suppose a manifold X is equipped with a Riemannian metric, E - X and F — X
are vector bundles equipped with inner products, and D : I['(E) — I['(F) is a differential operator of
degree d. The formal adjoint D* is the differential operator given by the formula

D" =) (), (a’(x)*\/@) ,

|Il<d

where a!(x)* € Hom(F|, E|,) is the adjoint of al(x), and +/det g is the volume form.
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The formal adjoint satisfies

(Dsp2)) = / (d10@1s1) - 52) Jdetgd
= /8151 . (al(x)*s“/detg) dx
= (=M /51 - 01 (al(x)*sz w/detg) dx

= <<Sl’ D*52>> >

where the second-to-last line is integration by parts, assuming that s; and s, are supported in the
coordinate chart. Since everything is linear and we can use a partition of unity to write sections in
terms of linear combinations supported in coordinate charts, we can ignore boundary terms.

The symbol of the formal adjoint is ¢(D*, x, p) = (-1)40(D, x, p)* since the multiplication operator
al(x)* and differentiation operator d, commute modulo operators of order d — 1.

Example 62. Consider d* : QF(X) — QF1(X). Its symbol is
a(d,x,p) = —ip : A*T;X — AFTIX,
where i, is the contraction map is defined as the alternating sum
ip(Pr A ApK) = PP A APk =P P2)PLAPI A APt
It satisfies i, 0 i, = 0 and i,(p A w) = IplPw—p A ipw.
Example 63.
o(Vi,x,p)a®s) =—(p-a)s.

Example 64. Consider the operator d + d* : Q¥*"(X) — Q04d(X). Tts symbol is

o(d+d*,x,p) = c(p) := —ip(®) +p A & : AT X — A°YTIX,
It follows that

c(p)w = i§w+p/\p/\w—ip(p/\w)—p/\ip(w):O+O—[p|2w.
This is known as the Clifford algebra relation

) = —Ip*-

Since (d + d*)? = A and symbols compose as expected under composition of operators, it follows
that

o(A, x,p) = — |p|* Ide.
Definition 65. An operator D is elliptic if for all x € X and for all p # 0 the symbol o(D, x, p) is in
Iso(Elx, Flx).

Example 66. The Hodge Laplacian A is elliptic, since — [p|* Id - has inverse — [p| > Id - whenever
p # 0. Similarly, d + d* is elliptic since c(p) has inverse —c(p/ |p|*).

Furthermore, D is elliptic iff D* is elliptic, since o (D", x, p)_1 = (-1 (U(D, X, p)_l)*.

Example 67. The coarse Laplacian is the map V', V4 : T(E) — T'(E). Its symbol is 0(V, V4, x, p)(s) =

o(V,x,p)(p ®s) = — |p|* 5. Thus the symbols of V{cVic and A coincide. The difference turns out to
be a zeroth-order operator in terms of the curvature.
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5.3 Sobolev spaces

To prove the main theorems of elliptic theory, we need to introduce the L?> Sobolev spaces L? for
s € R. Roughly speaking, L? consists of the space of functions (or sections) whose derivatives up to
order s are in L?. However, these are not “functions” in the traditional sense, but rather distributions.

Suppose E — X is a vector bundle over a closed Riemannian manifold X. Then L(E) for s € R is
the completion of I'(E) with respect to the topology induced by a particular Hilbert space norm.
Equivalently, one can define L52 (X) to be the completion of C*(X), and then define LS2 (E) to be sections
of E with coefficients in L2(X), i.e. L2(E) := L3(X) ®c~(x) I'(E). Thus it suffices to concentrate on
C*(X) and its completion L3(X).

Thanks to the Fourier transform, when X = T" is the n-torus, the definitions of L2(T") are especially
simple. Once one understands the Sobolev spaces L2(T"), it is not difficult to define L?(X) for any
closed manifold X. Indeed, when X is closed, the spaces L2(X) are characterized locally. It suffices to
use a finite partition of unity subordinate to some cover of X by balls, and then consider those balls
as open subsets of T".

Before we begin, let’s recall some basic properties of Banach spaces.

(i) All Hilbert spaces are Banach spaces

(ii) Two norms ||e|| and ||e||" on a Banach space B are equivalent if there exists C > 1 such that
CHIfIl < IIfII < ClIf|l for all f € B. In this case we write ||e]| ~ ||o]|".

(iii) A subsetS C B is bounded if there exists C such that ||f|| < Cforall f € S.
(iv) A subsetS C Bis closed if every Cauchy sequence in S converges to a point in S.
(v) A subspace of a Banach space is itself a Banach space iff it is closed.
(vi) Alinear map L : B; — B, is bounded if there exists C such that ||Lf|| < C||f|| for all f € B;.
(vii) A linear map L is bounded ift it is continuous.
(viii) A linear map L is compact if L takes bounded sets to sets with compact closure.
(ix) The kernel of any continuous linear map is closed.
(x) If ||e]| ~ ||e]|" then the corresponding topologies and notions of boundedness are equivalent.

(xi) IfL : By — B, is injective and has closed range, then the inverse map L™ : ran(L) — B; is
continuous.

(xii) A Banach space B is finite-dimensional iff its unit ball is compact.
The Sobolev spaces L? have the following properties.
(A) L?is a Hilbert space.
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(B) C™ isdensein L2.
(C) Lt =L~
(D) Ifs < t then LZ O L2, and this inclusion is compact.

(E) If D : T'(E) — I'(F) is a smooth differential operator of order d, then D : Lsz+ J(E) = LX(F).
Consequently, D : D(E) — D(F).

(F) For « € (0,1) and r € Z5,, there is a continuous embedding Lf rasnj2 C C™% into the Holder

space. In particular, since C"% c C7, it follows that L?> ¢ C” whenever s > r + n/2.
(G) OSLSZ = C*, and USLS2 = 9, the space of distributions on X.

(H) The pairing f - g := [, fgdvol for f,g € C* extends to a continuous duality pairing f - g for all
f eL?andg € L2 satisfying |f - g| < |[f|l; lg]|_,- For every continuous a € (L2)* there exists a
unique g € L2 such that a(f) = [, fgdvol forall f € L.

(I) If D : T(E) — I'(F) is elliptic, then the map

2 2 2
Y:12, - 2el? (5.2)

f = (Df.f)

has closed image.

Although the L? are Hilbert spaces, we will never make use of the inner product, only the corre-
sponding norm, which we denote ||e||;. Instead, the inner product symbol will be used only for the

duality pairing of

The last point[(T)|is extremely powerful. It implies by [(xi)| that the inverse map (Df, f) > f to Y is
continuous, which implies by[(vii)|and [(vi)] the famous elliptic estimate

fllera < Cos (IDFIl, + 1f s ) - (5.3)

for some constant Cp s independent of f (but depending on D and s).

Theorem 68. The elliptic estimate (5.3)) is equivalent to

Proof. We have just seen how (5.3) implies |(I)l For the converse, note that (5.3) implies that the
inverse to Y of (5.2) is continuous. Furthermore, Y is continuous by [(E)|and (D) Thus (5.3) is a
homeomorphism from L52 4 to its image. In particular, the image of Y must be closed. ]

The elliptic estimate implies all the interesting properties of elliptic operators. We shall take this
approach in Section [5.5|after defining the Sobolev spaces L.
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5.4 Fourier theory on T"

In what follows, C*(T") will be short for the smooth complex-valued functions C*(T"; C).
Definition 69. The n-torus is defined by
" :=R"/2rn2Z)".

Definition 70. For f,g € C*(T"), the inner product f - g is defined by

f-g:= [ fgdvol,
n

with dvol := (27)"dx' - - - dx" so that an ldvol = 1.

Remark 71. With respect to this inner product, the functions {ek’x } are orthonormal.

kev-1z"
Definition 72. Define L to be the lattice L := V—12Z".
o e o0 . o 2
Definition 73. For f € C*(T"; C), define Af := - 37" | 9:f.

Remark 74. Integration by parts shows that (9;f) - g = —f - d;g. It follows that (Af) - g = f - (Ag).
More generally, if p(z) is any polynomial, then p(A)f - g = f - p(A)g. Finally,

. 2N k-
P(&)e* = p(lk*)e"™.
The minus sign in the definition of A ensures that it is positive-semidefinite.

Definition 75. The Schwarz space §'(L), often abbreviated as &, is defined to be the space of complex-
valued functions on L which decay faster than any polynomial. Specifically,

S(L) = {c: L > C | Va € Z503K, such that |c(k)| < K(1+ [k]*)™}.

Definition 76. The inner product ¢ - ¢; on §(L) is defined by

-G = Z C1(k)%~

kel

Remark 77. The sum in ¢ - ¢, is absolutely convergent since ) (1 + 1k|?)~@ converges for a > %n, and

one can choose bounds on ¢; and ¢; so that |c1(k)cz(k)| < K1 + |k|*)° for any a > %n.

Definition 78. The inverse Fourier transform F ' : $(L) — C®(T"; C) is given by

Fo)(x) == Z c(k)ek™.

keL

Lemma 79. The inverse Fourier transform is a well-defined isometry onto its image.
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Proof. First we must check that the image of ! consists of C* functions. Thanks to the rapid
decay, all sums will be absolutely convergent, and thus it is justified to swap orders of derivatives,
summations, and integrals. In particular, ) c(k)ek* € C* because

o, Z c(k)ek™ = Z Kl c(k)ek™
k

k

is absolutely convergent for any multiindex I. For the isometry claim,

F N a) F ) = /T (Z Cl(kl)eklhx) (Z Cz(kz)e_kz'x) dvol

ky ka

= > alkeky) [ ehi* dvol
1k ™

= - 0.
In particular, this shows that ! is injective. ]
Definition. The Fourier transform & : C*(T";C) — S(V-127") is F(f) = cf with ¢e(k) == f - ekx,

Theorem 80. The Fourier transform F is a well-defined two-sided inverse for F .

Proof. To show that # takes C*(T"; C) to 8(L), we must show that ¢; decays quickly. Note that for
any a € Zxo,
e = (L+ k) + A)er,

so that y L
e (o] = (14 1K) (@ + 2)F) - ] < (14 1K) 10+ ) Sllco -

Therefore, to show that ¢f € §(V-127"), it suffices to take K, = ||(1 + A Sl co-

To show that F is a left-inverse to & !, compute
(FFe)(ko) = (Z c(k)ek"‘) cefr = " e(k)of, = clko).
k k
The interesting direction is to show that
FIFf=f.

In particular, plugging in x = 0, we wish to show that

D¢ = £(0),

k

This is clear in the case that f is constant, in which case ¢; = f(0)do, where &y is the Kronecker
delta function. It is also clear if f is of the form f(x) = (ekl'x - ekz"‘) g(x) for g € C™, since then
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cr(k) = c4(k — k1) — c4(k — k2), which cancels after summing over k. For general f, using Taylor’s
theorem with remainder, it is not difficult to write

F) = £0) + Y (V7 ~ 1gitx)
i=1

for smooth functions g; € C*, from which the theorem follows from the previous cases. o

Definition 81. Fors € R, define (1+ A)¥? : C®(T") — C(T") by
L+ AYPf o= F7H (@ + (k) 2cp(K)) -

Definition 82. Let L*(T") denote the L? completion of C*(T"), and let £*(L) denote the square-
summable sequences on L.

Remark 83. Since & is an isometry from C*(T") to §(L), it extends to an isometry on the L?
completions

F : LX(T";C) » *(N-17").

Definition 84. The Sobolev space L2(T"; C) is the L* completion of C*(T"; C) with respect to the
norm ||f|| := ||(1 + A)5/2f|

> Where |If1l, denotes the standard L* norm.

Remark 85. One can identify f € L2(T"; C) with the sequence ¢ such that (1 + |k|?)s/ 2cf(k) e 2 If
s > 0, then ¢y can be identified with the Fourier transform of some actual element f € L?.

Definition 86. Fors € R, let £2(L) denote (1 + |k|*)™/2¢2(L), specifically

DA+ kP e < oo}.

fsz(L) = {C:L—>C
k

Remark 87. If s < t, then € D {? > &. Correspondingly, L > L? > C*.

Lemma 88. Each {0;}"., induces a map L2, — L for each s € R.

Proof.

k?
10if1E, = [[a+ BRG] = > s+ KR | R < IIFIE

= (1+ k%)

Definition 89. For ¢}, ¢c; € §(L), the convolution product c¢; * ¢, is

(are)k):= ) alk)elk).

k1+k2=k

Lemma 90. If f,g € C*(T";C), then F(fg) = F(f) = F(g).
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Lemma 91. Ifg € C®, then multiplication by g induces a bounded map L? — L? for each s € R.
Proof.

IIfgll, = ||+ Y|, = || + KD (cr * e ()],

O

Theorem 92. If D : C*(T";C) — C>(T"; C) is a differential operator of degree d, then D induces a
bounded linear map L52+ P L2,

Theorem 93. If s > n/2 and f € L, then f € C° with ||fl|co < K ||fI|p2-

< e < DA+ |+ 152, ()| < /Zu + k)= Nl = K I1flpz -
Co k k k

O

Proof. Compute

fllco = HZ cr(k)ek*
k

Corollary 94. Foreverye >0, L} D ck> L J24e I particular,

| 2amy = ceam.

§—00

Theorem 95. For each s, the inner product C*(T") x C*(T") — C naturally extends to a perfect
duality pairing LI L2 — C, given by f - g = Yy ¢s(k)cy(k). It satisfies the estimate |f - g| < ||f]|, |If]|_-
For every bounded linear functional ¢ : L2 — C, there exists a unique g € L* such that ¢(f) = f - g.

Proof. The bound follows from
frg=Q0+07%f-1+0)7 g

Now both (1+ A)*2f and (1 + A)~/?g are in L? with ||(1 + A)s/szO = ||fll;- The existence of g given
¢ follows from applying the Riesz representation theorem. ]

Definition 96. Let §’(V~12Z") denote the space of sequences with polynomial growth. Specifically,
§'(V-12") = {c : V=1Z" > C | Ja.K such that |c(k)| < K(1 + [k[*)*} .
Remark 97.
() ¢am=sw=1zm.

§——00

Remark 98. The space S§'(V=17Z") is the dual space of
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Example 99. Consider the constant function 1 € §’(V—12"). The pairing cr - 1 gives
& 1= ) cp(k) = £(0).

k

In the function domain, we should think of this as f - § = f(0), where § denotes the Dirac delta
function on T".

Definition 100. The space of distributions S’(T") is the set of linear functions ¢ : C*(T";C) — C
such that for every ¢ there exist constants a4 and K so that

|6()] < Ky [|(1+ A)*f||lco Vf € C(T";C).

5.5 Elliptic theory

Theorem 101. If D is elliptic, then any distributional solution to Df = 0 is smooth.

Proof. Suppose f € @ and Df = 0. Then byf € L? for some ¢ € R. Thus ||f||, < oo. The elliptic

estimate implies
||f||s+d < CD,S ”f||s+d—l (54)

for any s € R. Taking s = t — d + 1, it follows that ||f||,,; < o, so f € L?, . By induction, f € L? for

all s € R. From[(G)|it follows that f € C*. o

In general, one would expect, as s decreases so that LZJr grows, that the subspace ker(D : Ls2+ P
1) c Lf+ ; is also likely to grow. However, Theorem [10]) shows that this is not the case when D is
elliptic, and the kernel is independent of s when viewed as a subspace of distributions &. Indeed,
ker D is a fixed subspace of C*.

Theorem 102. If D is elliptic, then ker D is finite dimensional.

We present two proofs. The first uses sequences and estimates, while the second uses more abstract
Banach space methods.

Proof. Suppose for a contradiction that ker D is infinite-dimensional. Since ker D ¢ C*, the inner
products f -g make sense for any f, g € ker D. In particular, one can construct an infinite orthonormal
sequence {f;} C ker D. Thus the L norms are ||fi[|, = 1. It follows from (5.3) with s = 1 — d that {f;}
is bounded in L?. By((D)} {f;} must admit a convergent subsequence in L{. However {f;} is not even

Cauchy in L} since ”f, - ff”o = 2 for any i # j by orthonormality. o

Alternative proof. Consider the subspace

K:=ker(D: L%, — L) C L?

s+d°

This subspace is closed by([(ix)} Thus by[(v)} K is a Banach space. Recall that the map Y from isa
homeomorphism onto its image from the proof of Theorem 68| Therefore the restriction Y|k is also
a homeomorphism onto its image, given by f +— (0, f), Lf+ ;> {0le L. By Y|k is compact. In
particular, we have shown that K admits a compact linear homeomorphism. Thus the unit ball of K
must be compact by/|(viii)| It follows from [(xii)| that K is finite-dimensional. O
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Theorem 103. If D : [(E) — I'(F) is elliptic, then there is a decomposition D(E) = ker D & (ker D).

Proof. Suppose {ki,...,k,} is an orthonormal basis for ker D. Then for any f € D(E), f € L?
for some s € R. Since {k;} c C® c L2, it follows that f - k; is well-defined. Then using the
Gram-Schmidt procedure,

f=( k)ki+ -+ k) + (f = (F - kki+ - + (f - k)k,) € ker D @ (ker D)*.
O

Theorem 104 (Poincaré inequality). If D is elliptic of order d, then there exist constants C, _such that
forall f € (ker D)*,
||f||s+d < Cll),s ||Df||s :

Proof. Suppose for contradiction that the inequality fails. Then there exists a sequence {f;} such that
fi € (ker D)*
Wllea

0,
DAl

Rescaling the f; so that ||f;||;,; = 1, this is equivalent to ||Df||; — 0. Since {f;} is bounded in L?_, it

follows that there is a subsequence which converges to some f, € L52+ 4y For simplicity, denote this
72

subsequence also by {f;}, so that f; — fin L, , .

First we wish to show that f,, € (ker D)*. For any k € ker D, consider f; - k. This is zero since
fi € (ker D)*. Next we take the limit as i — co. Sincek € C*, k € (LZ_,_)* =L? _ |, wecan use

s+d-1 —s—d+
the continuity of the duality pairing L2,  x L*> ,  — C to compute

d+1

0= lim(f; - k) = foo - k.

Thus fo € (ker D)*.
Next we will show that Df, = 0 by showing that Df., - ¢ = 0 for any ¢ € C*. Consider

Dfw: ¢ =fo-D'¢ = lim f; - D"¢,
1—00
where once again we use continuity of the same duality pairing. Thus
Dfe- ¢ = lim (f;- D'¢) = lim (Df;-¢) < lim [Df ¢, = 0.

Thus Df = 0. Since fo € (ker D) N (ker D)*, it follows that f,, = 0. However, this contradicts the
elliptic estimate

1= flleea < Cos (IDA + Wfillerar)
since both ||Dfi||; = 0 and ||fi|;, -1 = I[feollsz4-1 = O-
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The Poincaré inequality allows us to strengthen the elliptic estimate. Let 7y : L52+ d(E) — L§+ d(E) be
the orthogonal projection to ker D. For any orthonormal basis {ki, ..., k,} of ker D,

() = D (f - kidki.
i=1

For any f € L?, ,(E), we can write f = m(f) + fi, where f, := f — m(f) is orthogonal to ker D. In
this case,

fllssa < Willsea + 1me(Dllssa < CpMIDLL + 1 (Fllssa = Cp s IDFlls + (1 -

Now note that the term ||m(f)||,,, consists of the restriction of the ||e||;,; norm to the finite-
dimensional subspace ker D. All norms on a finite-dimensional vector space are equivalent. Thus,
after possibly changing the constant Cj, , we obtain

llva < Chs (IDAIls + Im(HII)

for any fixed norm ||e|| on ker D. This also implies

fllseq < Coss (IDFN + 11l

for any s’, not just fors’ =s+d — 1.

Suppose D : T(E) — I'(F) is an elliptic differential operator. Then D* : I'(F) — I'(E) is also elliptic,
and there are induced maps on the completions D : Lf+ J(E) — L}(F)and D* : L2 (F) — Lis_ J(E)-
Furthermore, ker D* is finite-dimensional, spanned by finitely many smooth sections in I'(F). We
wish to prove the Hodge decomposition

I'(F) = ker D* & im D.
We will prove more generally that
L*(F) = ker D* @ im D.
Since ker D* is finite-dimensional, we can use a finite Gram-Schmidt process to write
L%(F) = ker D* @ (ker D*)™.

It remains to show that (ker D*)* = im D. In particular, for any & € L2(F) which satisfies & L ker D*,
we want to construct a solution w € Lf+ 4(E) to the PDE

Dw = a € L3(F). (5.5)
By duality, this is equivalent to
v-Dw=vy-a Yyel>(F),

which is the same as
D'v-w=vy-a Yyel*(F).
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Now I['(F) c L2(F) is dense since L* (F) is a completion of I'(F). Thus our equation is equivalent to
D'yv-w=vy-a Yy el(F).

This is called the “weak form” of Dw = «.

Philisophically, the “weak form” corresponds to viewing w as a distribution, i.e. a continuous func-
tional on the space of smooth sections I'(E) — C. Any section « of a vector bundle E with coefficients
in L? determines a unique functional £, by

¢y :T(E) > C,
&x(‘b) = (/5 -,

which satisfies the inequality
5«((/5) < ”‘X”s ”(p”—s

Conversely, suppose £ : I'(E) — C satisfies |£(¢)| < C||¢||_ for some C,s € R. This implies that
¢ is bounded with respect to the L2 topology on I'(E). By the Hahn-Banach theorem, ¢ extends
to a bounded map ¢ : L2,(E) — C. Since I'(E) C L?,(E) is dense, this extension is unique. Thus
¢ € (L2(E))* = LX(E), so ¢ = {, for some & € L?(E). This motivates the following definition.

Definition 105. The space of distributional sections 2’ (E) is the space of continuous linear functionals
I'(E) — C, where ¢ : I'(E) — C is continuous if there exists C, s € R such that |¢(¢)| < C||¢]|_..

From this definition, it is clear that @"(E) = U,_,_«L2(E).

For any differential operator D : I'(E) — I'(F) with smooth coefficients, we want to make sense of D
in terms of distributions. Assuming that boundary terms vanish (i.e. X is closed), then

pa(W) =y - Da = D'y - a = (D).

Thus distributions over closed manifolds satisty
lpa(y) = Lu(D"y), Yy € I(F).

Recall that we wish to construct w € Lf+ J(E) which solves Dw = « given any a € L2(F) which
satisfies @ L ker D*. This is equivalent to the weak form

lo(D'y) =v-a Yy eI(F).

To solve this equation, we define a distribution ¢ : T(E) — C which corresponds formally to
g — ((fD_la)"

To make the correct definition, we should understand this formal correspondence. It should satisfy

“bpr (D'y) =Dy -D'a =y -DD'a =y - a.”

Thus we define for « L ker D,

¢ : (image D" c T(E)) — C,
{(D'y) =y - a.
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First we must check that this is well-defined, independent of our choice of y. If D*y; = D*y, then
D*(y1 — ) = 0s0 Y — v, € (ker D*)*. Since a € (ker D*)*, it follows that y4 - & = v - a, and € is
indeed well-defined. Next we wish to extend from ¢ : im D* — C to ¢ : T(E) — C. For this we will
use the Hahn-Banach theorem. In order for it to apply, we must show that ¢ is bounded in some
Sobolev topology.

Lemma 106. The functional € : (im D*) — C, is bounded in the L> _, topology, i.e.
[6(@)] < Cpas ||¢||L§Hl V¢ € I(E)

for some Cp 4 s which is independent of ¢.

Assuming this lemma, then by the Hahn-Banach theorem, ¢ extends to a bounded linear functional
l - Lis_ d(E) — C. By the Riesz representation theorem, there is some w € L§+ d(E) such that

f((/)) = ¢ - w. This w then satisfies Dw = a € L2(F) since for all ¢ € I'(F),

¢-Dw=D"¢-w={(D"¢) =(D*¢) =¢-a.

This lemma follows quickly from the Poincaré inequality. Assuming that ¢ = D"y, it is simple to
rearrange that y L ker D*. Then gives

@) = 16Dy = ly - ol < Iyl Nl < Cp _ ID"YIlg_y llalls < (Cpye —, llalls) 1Bl]__g
proving the lemma.

Now recall our original motivation. We wanted to produce a slice $4, through some connection Ay
which is transverse to the action of gauge transformations.

TAO.QY = TAO@AO &) TA0<§)A0,
O'(X;9aq) = Im(da,) ® C.

We want to choose C = Im(dy,)*. To find the appropriate decomposition of Q'(X;gaq), we need
an elliptic operator. We take D = dy, + d; from sections of the bundle A*T*X ® g4 to sections
of the same bundle. The symbol is the Clifford map c(p) := —i,(e) + p A e, acting as the identity

on the gaq factor, which is invertible away from p # 0 since c(p)> = — [p|*-. It follows that ker D
is finite-dimensional, and Q°(X;ga4) = ker D @ im D. On any Sobolev completion, D acts as a
homeomorphism on im D. In particular, D takes any closed space to a closed space. For example,
the image of D on the closed subspace O (X; gaq) is some closed subspace of

OP (X5 9p0) © QPMH(X; 9aa).

Restricting to each of the two factors, we find that the image of d;;o is a closed subspace of Q7 71(X; gaq)
and that the image of dy4, is a closed subspace of QP*(X; gaq). It follows that

im dAo =im dAo = (1m dAO)LL = (ker dZO)L,
and similarly with ds, and d}; exchanged. Thus

P (X;0aq) = imdy, ® kerd, =imd, ®kerd,,.
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Note that when Ay is not flat, we do not generally have that im ds, L im d}, since
* 2
dajo-dy f=dy a-B= [Fa, A o] - B.
Thus we don't have the more general decomposition

VP (X;8aq) # imdy, @ im dy, ® (kerdy, Nkerd, ).

5.6 LZ Sobolev spaces

For1 < p < oo, the space LP(E) is the Banach space completion of I'(E) with respect to the norm

lIslle = (/X ISIP)I/p.

Each s € LP(E) is determined by a measurable section. Two measurable sections which are equal
almost everywhere determine the same element of L (E). There is also L™ (E) which is defined on
measurable sections of finite norm

sl = lim ||s||;» = ess sup |s].
p—o

Note that I'(E) is not dense in L™ (E). The completion of I'(E) with respect to the L norm is simply
CO(E).
The L norms satisfy the estimate

f -9l <l lgllpes 1<pg<oo, p+qg’=1

Indeed, for 1 < p < oo, the dual space (I/)* = L4, where 1 < g < oo satisfies p~! + g~ = 1, so that any
t € (LP)" is given by £ = ¢, for some g € L1 so that {,(f) = f - g. For any p, the corresponding value
of q is called the dual exponent. Note that the dual space (L*)* is larger than L.

By iteration, if 3,¥ | p~! = 1, then Uﬁ - fk’ < lAlly, - - - Il
For k € Z5, define the Li norms by

k
I, = DL,

Whenp =2,X =T",ands € Z,,

=S A = S g = 3 o - Z(Z rkflz)'“"”z'
i=0

[HII<s [lIl|<s kel keL \|I|l<s

It is readily verified that this is equivalent to

UFIZ = D 0+ kP Ie(R)l.

kel
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In this sense, the le spaces generalize the L2 spaces.

If E is a vector bundle, and A is any smooth connection on E, then define

k
sy = 0 [Vhs
i=0

P
k.Ag L

It can be verified that for any two connections Ag and Ay, the norms |[s|| » and [|s||;» are equivalent.
k'AO k,Al

5.7 Slice theorem

Now let’s return to the proof that

m: (& x 8y,)/Stab(Ag) — &,
m(g,A) =g-A

is a local diffeomorphism onto its image. We will assume that n = dim X satisfies n > 3. This is
to ensure that the solution r to n™' + 271 + ™! = 1 satisfies 1 < r < oo, and the required Sobolev
embedding exists.

Recall that we need

TAO.Qf = TAO@AO &) TAOCS)AO,
QY(X;gaq) = im dZO @ ker d:&o'
Thus we take
Sap(&) = {Ag +a | ae Q' (X;ana). di,a=0, llallp: <e).

Our goal will be to show that when ¢ is sufficiently small, that under the appropriate Sobolev
completions, m indeed defines a local diffeomorphism onto its image.

First we verify that the linearization D4 ;ym is an isomorphism from (T}E X Ty, 84, (¢)) /TiStab(4¢) —
Tp, . Recall that T% = Q%(X; gaqa), Ta,Sa, () = ker dzo C OY(X;8aq), and T;Stab(Ag) = kerdy, C
Q%(X;9p4), and Ty, of = Q(X;gaq)- Recall that

m(g,Ag+a) = g- (Ap + a) = Ag + gag ™' — (dag)g ™"

Thus the map Dy ym(&, a) = a — daé. (Consider the linear term in ¢ when replacing g — 1 + t¢,
glo1-téaw ta)

Then D4y is clearly surjective by the Hodge decomposition Q'(X;gaq) = im dy, @ ker dj\o' If
(&, a) is in the kernel, then by the Hodge decomposition, a = 0 and d4& = 0, so & € T;Stab(Ap). This
shows that D4 ;ym is injective. To show that m is a diffeomorphism onto its image, we must show
that it is injective. Thus we must show that if

g-(Ap+a)=Ay+b, where Ag + a,Ag + b € Su,(e),
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then g € Stab(Ay). This is equivalent to

b=gag™ ~ (da,9)9",
da,g = ga — bg.

It will now be useful to consider gaq and Gaq as fixed subbundles of gI(E) for some vector bundle E
associated to a faithful representation. Thus g and a can be viewed as sections of gl(E).

Now we use the identity
dy(ga) = — x da(g x a) = — % ((dag) N *xa) — g * dp % a = gdya — (dag) - a.

In the last term, dag - a denotes the combination of inner product of one-forms and matrix multipli-
cation in gl(E).

Applying d} , and using the fact that d; a = d; b = 0, we obtain
dy,da,g = b-dag - (dag) - a.

Now use the Hodge decomposition of Q°(X;gl(E)) to write g = gi + g., where ds,gx = 0. The
condition g € Stab(Ay) is equivalent to d4,g = 0, or g, = 0. Towards proving that g, = 0, take the
gl(E)-inner product of both sides with g, :

ldaogill?> = Tr(b - dagy g — (daygy) - agh)
< bl 1daogollzz lgollyy + daggelliz Nallpa llgally, . n7'+27 4171 =1,
= (llallgs + 15112 gl 1dag ]l

2
< 26C g, I Nldag.l;s
Ao

where we used the fact that there is a continuous embedding Li Ao (gI(E)) <= L'(gl(E)) with some
constant C, by the Sobolev embedding theorem. Now

IIeJLIIi;A = llgullf> + ldacglly> = go - (1 +di dag)gu,
Ao

and
U+ dj dag)ge = dy day ((d5,da) ™ +1) g1 < (M(A0) ™" +1) d} dagg..

where 1;(A) denotes the smallest nonzero eigenvalue of dzo da,. Thus
lglizz, < (M(A0)™ +1) Idaggallzs

It follows that

ldaog 172 < 2CevM(A0) ™ + 1ldaggllf- -

If ¢ is chosen small enough so that 2Cey/A1(Ap)! +1 < 1, then ds,g, = 0. Thus g, € kerdy,, so
g1 = 0 as desired, and m is injective with $4,(¢).
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2
LAo

depends on Ay. The answer is no. The constant C from functions L} < L" suffices. In particular, for
seLi, (B)

One may wonder whether the bound C for the map L{ , (E) < L'(E) for vector bundles necessarily

lIsllz = MlIslllz- < Clllslllz2 = C\/IISIIiz +IVIsllz, < C lsllzz, -
The last inequality follows directly from Kato’s inequality
IV sl < |[Va,s|.

Wherever s # 0, we have
V(s-s) s
= — - Vy,s,

Vis| =Vvs-s=
sl 24/s - s Is]

SO

S
|V |S|| < ﬁ |VAOS| = |VA05|-

To deal with the case where s has zeroes, one argues by some sort of approximation argument. For
example, one can replace [s| by Ve + s - s and send € — 0. Or one can approximate s by a sequence
of smooth sections transverse to the zero section. That way, the zero set of s has measure zero and
does not contribute to any L norm estimate.

The remaining ingredient to make this proof rigorous is to show that there are sensible Sobolev
completions of &/p and &p so that the completion of &p acts on the completion of &/p. For this, we
need Sobolev multiplication.

5.8 Sobolev multiplication

Recall that there are embeddings
(o ifk/n—1/p >0,
1P (LT ifk/n—1/p <0,
L Vr ifk/n—1/p =0.

In a nutshell, the idea of Sobolev multiplication is as follows. We want to understand when multipli-
cation

xLl -1,
f.9)~ fg

is continuous. Derivatives don't magically appear, so we take 0 < m < min(k, £). Thus we seek a
bound on the L" norm of V"*(fg). By the product rule, this expands as a sum

V™(fg) = (V"f)g+m - (Vm_lf) ®Vg+--+fVg.

We wish to show that each term of this sum is in L". It turns out that it suffices to check both end
terms (V" f)g and fV™g are L. For the first term, V"'f € le_m and g € Lg. We apply the Sobolev

embedding to each of V"'f and g to obtain functions which are in either C° or an L space. Then it is
straightforward to check whether the product is bounded in L". The same must be checked for f € L‘Z

and V"g € LZ—m' If everything is within the appropriate ranges, then Li X Lz — L}, is continuous.
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Sobolev multiplication below the borderline

Whenever k/n —1/p < 0, the Sobolev space L‘Z contains discontinuous functions, and thus does not
embed into C° or even L™.

Theorem 107. Consider two Sobolev spaces Li and LZ such that strict inequality holds: k/n —1/p < 0
and {/n —1/q < 0. Then multiplication of functions extends to a continuous map of Sobolev spaces

I xLl -1,
whenever m € Z with 0 < m < min(k, {), and r is such that
0<m/n+1/p—k/n)+(1/q—¢€/n) <1/r <1

In other words, there exists a constant Cxpgrk¢m (depending only on X and the Sobolev indices) such
that

VFglle;, < Cxpariem N2 llgll,e

Remark. Originally we defined the Sobolev space L}, for m € R and r € [1, o] via the spectral
decomposition of the Laplacian:

Ly, := {distributionsf | (1+A)™*f € Lr} :

But here we will assume without proof that for m € Z, the L}, norm is equivalent to
m

Ul ~ > |IV'f
i=0

Proof. To prove our desired estimate, it suffices (by the iterated product rule and triangle inequality)
to find an estimate

L

(v (v*9)

for each pair of integers a,b > 0 witha + b < m.

I < Cqurkfab ”f”LIZ ”g”Lz

We have continuous maps

ve 1
1! 5 1P < [UrG-am
k k—a
and
g V' g S N
Tg==B)/n
L,— L, — LY .
By Hoélder’s inequality

W gll e < Ul gl »

so multiplication is continuous on
Ll/u % Ll/v N Ll/(u+v)'

(This assumes that a + b < 1so that LY(@*) s still a Banach space.) Thus mutiplication is continuous
P P
on

1 1 1
—(k—, (= “(m—a— — — r
Ll/p (k—a)/n X Ll/q (t-b)/n — L (m—a=b)/n+m/[n+Q1/p~k/n)+(1/q—C/n) <y L R
and composition of these maps gives a continuous map
P q r
L XL, — L.

Our desired constant Cypar is by definition the operator norm of this map. ]
ktab
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Sobolev multiplication above the borderline

Theorem 108. Suppose that k/n —1/p > 0 and Li — LZ (ie. k> Candk/n—-1/p > €/n—1/q). If
t € Z>, then multiplication of functions extends to a continuous map of Sobolev spaces

P q q
L XL, =L,
Proof. As in the previous section, we want to check

[P0, < Cxpaseas e Nl

for all nonnegative integers a, b such that a + b < £. We have to deal with the cases

co if (k—a)/n—1/p >0,
Va 1
Ly — L, = \LT 7 if (k—a)/n—1/p <0,
L' Vr if (k —a)/n-1/p =0,
and
b 0 if (¢ —b)/n—1/q >0,
\v/ 1
L] — LT, = {LT@07  if (6 -b)/n—1/q <0,
L' Vr if (6 - b)/n—1/q = 0.

o Ifboth (k—a)/n—1/p < 0and (£ — b)/n —1/g < 0, then as in the previous proof,

1 1
LUp-G=a)/n ¢ [ Va=0=b/n <y [4
as desired since

a+b<t k/n-1/p>0
1/p—(k—a)/n+1/q—(-b)/n <1/p—k/n+ l/q <1/q.

o Suppose instead that (£ — b)/n —1/g < 0and (k — a)/n —1/p > 0. Then
LZ—h N Lm,

and
Li_a — CYor L" Vr.

- In the case b = ¢, we must have a = 0, so (k —a)/n —1/p = k/n —1/p > 0 and thus
Li_a — C. Therefore,

I’ xILi e COx LTawmn = C0x [ — L4
k—a {-b - :
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- Ifb # ¢, then LZ — L' for any r, so
—-a
1
L?_b X Li_a — LVa-@o/m1r = L9 forr = n/(€ — b).
« Suppose (k —a)/n—1/p <0and (£ —b)/n—1/q > 0. Then
1
[P < LTr&an s [4
k—a

because
1/p—(k—a)/n<1/p—-(k—-{)/n <1/q.

For equality to hold, botha = fand k/n —1/p = {/n —1/q,thus b = 0and ({ - b)/n —1/q =
k/n —1/p > 0. Therefore, LZ—b — CO.

o Finally, suppose (k—a)/n—1/p > 0and (¢ —b)/n—1/g > 0. Then choosing r = 2q, we obtain
I —IL*andL! | < L[*,s0Lf xL! k6 — L.

Sobolev multiplication on the borderline

Theorem 109. Suppose that k/n —1/p = 0 and Li — LZ (ie. k > Cand €/n—1/q < 0). If € Z>y,
then multiplication of functions extends to a continuous map of Sobolev spaces

(XN L®) x @INL®) - (LI N L™).

Furthermore, if the other function is below the borderline {/n — 1/q < 0, then we have the stronger
result
P~ q q
(LkﬂL )XLZ - L,.

Proof. We will proceed by assuming £/n — 1/g < 0, proving continuity of the second multiplication,
and realizing £/n — 1/q = 0 as an exceptional case.

Continuity of (L‘z N L*) x LZ - LZ is equivalent to estimates of the form

[0, < Capaanie (171 + 171~ ) gl

for all nonnegative integers a, b such that a + b < £. For the case a = 0 we use the L, and for the
case a > 0 we use the Sobolev embedding theorem to obtain

= L™ where n/0 := oo.

va | L% ifa=0
P 0
(LkﬂL ) — 1 1
Larm ifa>0

In particular, for all a we have an estimate of the form

19l < € (1l + 1 ).

Note that the ||f||,~ term on the right is essential to cover the case a = 0 since LZ > L.
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For the other factor,
L"'Vr<oo itb=0and{/n-1/q =0,

1 (5.6)
L1a-(5)/n else.

g V' q
Lf _)Lf—b;)

In the latter case when either b # 0 or {/n —1/q # 0,
(L2 A L™) X L] o LT s L4,
as desired. This proves continuity of

(Lf N L®) x LT - L when ¢/n —1/q < 0.

In the exceptional case where g is also borderline, so that £/n —1/gq # 0, we should take g € LZ NnL*®

1
so that we can effectively set 7 = oo in (5.6) and obtain a bound for Vg in L7@07 = [*/b even
when b = 0. This proves continuity of

P~y 4~ 7 q

(X N L) x (LI NL®) - L.

For the original claim
(IF L) x LI N L) - (LI N L),

it remains to prove

(XN L®)x LINL®) - L%,
but this is obvious since

L XL® - L%,
O

Remark. These estimates can be generalized to non-integral Sobolev spaces by using interpolation

theory.

Exercise 110. Suppose that1 < p < co and k € Z with k > 1are such that (k + 1)/n — 1/p > 0. (In
particular, if » = 4 and k = 1, then p > 2.) Show thatifg € ?]fﬂ and A € .fo , then

. g-AE.SZf‘D,

« Fpe b (X A’T*X)

5.9 Slice theorem

We wish to prove the existence of Coulomb gauge. For any smooth connection A, we wish to show
that any “nearby” connection A + a is gauge-equivalent to Ay + b, which is also nearby, and satisfies
the Coulomb gauge condition d, b = 0. Furthermore, both the gauge transformation and b are
uniquely determined by a, up to a gauge transformation which stabilizes Ay.

More precisely, the idea is as follows. Suppose that X is a closed Riemannian n-manifold with n = 4,
equipped with a principal G-bundle P — X, where G is compact. Fix some smooth connection
A € . We wish to study the space of &-orbits in an L2-neighborhood of A,. Towards this goal, we
seek an orthogonal complement to the tangent space of the &-orbit at A:
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Definition 111. The slice at a connection A of radius ¢ is defined to be

Sao.d = {a € O'(X;044) | dj,a =0, lallz, =< 8}.

If § is sufficiently small, in a manner which depends on A, then the claim is that the left quotient of
S4,.0 by Stab(Ag) serves as a chart for B = & /€ around [Ap] in the following sense. Consider the
map

g x CS)A()’(S

(220400
0 Stab(Ag)

ny
given by
Ay (g @) = g - (Ao +a) = Ag + a— (Vagrag)g ' = Ao +9ag" — (Va,9)9 ",
and where g € Stab(Ao) acts on &y, by the adjoint action a — goag,', and on & by g - gg;.

Theorem 112. For every smooth connection Ay € &, there exists a § depending on A such that in the
specified Sobolev completions, my, 5 is a homeomorphism onto its image:

G2 X Sp, 612

: o,
Mo " gab(ay) M

The first thing to check is that the definition of m,, makes sense: namely that Stab(A) actually maps
Sa,.0 toitself, and that my, is invariant under the action of Stab(Ay). This is simple to verify:

Lemma113. Ifgo € Stab(Ao), and a € S4, 5, then goagy' € Sa, s and ggy"-(Ao+goagy’) = g-(Ao+a).

Proof. Suppose g € Stab(Ay). This is equivalent to V4,g = 0. In order to verify thatg - (Ao + a) € S,
we must check the two defining conditions from Deﬁnitionfor be S, whereg-(Ap+a) =Ay+0.
Since g € Stab(Ap) is equivalent to V4,9 = 0, it follows that b = gag™'. To check that dy,b=0,use
dzo = —1;V4,.i» and the product rule for V4, to conclude that

d;,(gag™) = g(d},a)g™" = 0.

2 2
Finally, note that ||b||i12 = ||gag_1 ot ||g(VA0a)g_1 ;
thatb € 8. |

, = ||a||i2 < §;. These two conditions verify
1

For the proof of Theorem [112, we would like to argue that my 4, is a diffeomorphism onto its image.
We would use the inverse function theorem to prove that my s, is a local diffeomorphism for &
sufficiently small. Then we would prove that nmy 4, is also injective for §; sufficiently small. We
would be done since any injective local diffeomorphism is an actual diffeomorphism onto its image.
Unfortunately we cannot make this argument directly, since G2 isnota smooth Lie group in the L3
topology, as we explain in the next section.

87



5.9.1 Smoothness problems with the borderline Lie groups

Suppose P — X is a principal O(k) bundle with standard vector bundle E — X and endomorphism
bundle gI(E) — X. Then &p can be identified with sections of O(E) c gI(E). Specifically, a section
s € ©p is the same as a section s € ['(X; gl(E)) which satisfies the equation ss” = Idg € T'(X; Sym(E)),
where Sym(E) denotes the subbundle of gl(E) consisting of the endomorphisms of E which are
symmetric (with respect to the metric on E).

We would like to be able to take the completion of &p with respect to a Banach space topology, and
show that the completion is a Banach Lie group. It suffices to show that Idg is a regular value of
the map F : T(X;gl(E)) — T(X;Sym(E)) given by F(s) := ss’, and that this map is smooth. The
derivatives are d,F(t) = tsT + stT, d?F(t,u) = tu” + ut”, and d*F = 0 for k > 3. Smoothness is
guaranteed so long as the Banach space is an algebra under multiplication. Thus we should take an
Li topology which is above the borderline, or the Li N L™ topology on the borderline.

To show that Id is a regular value, we must show that d,F is surjective for any s in the appropriate
completion of T'(X; gI(E)) such that ss” = Idg. Surjectivity follows from observing that d;F (%vs) =0

for any v € I'(X; Sym(E)). This shows that in the borderline case, &, ;» is a smooth Banach Lie group
"k
in the LZ N L™ topology.

In this borderline case, the Lie algebra consists of Li N L™ sections of o(E). This is problematic for
the Hodge decomposition

Q' (Xsgnaly = kerd;, @ da, (2" ara)ys ).

Specifically, we want to interpret the second factor as the tangent space of the &, ;» orbit, and
"k
Q°(X;g44) ;¢ as the Lie algebra of &, ». Then ker dzo is a complementary subspace, so it can be used
k "k

as the tangent space to the slice. However, L‘Z N L* is missing functions such as In In(exp(1)/ |x|),
which are in Li but not L*°. Thus

QY(X; gAd)Li_l # kerd) @ da, (QO(X; gAd)Lian) :
Specifically, while
0 -1
g(x) = exp (lnln(exp(l)/ lx|) ( 1 0 )) ,

suitably extended from local coordinates, is a perfectly fine element of the borderline &, he

LhnLe> t
corresponding direction tangent to the orbit given by

(d,99™" = da, (1n In(exp()/ |x]) ( 0y ))

is missing from dy, (QO(X; 9Ad) r me). The moral is that while elliptic operators behave nicely

between Sobolev spaces, they fail to behave nicely on other spaces such as C* or L’Z NL™.
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5.9.2 Calculus on small slices

While we cannot directly argue via the inverse function theorem for the L? completion of the
slice 84, 6 due to the borderline issues of the previous section, we can use differential topological
arguments above the borderline. We can then transfer these arguments to the borderline via a
combination of the continuity method and density arguments.

Consider the map

gLZ X CS’A(),&,LZ

5/2 3/2
m : A2 . 5.7
Ao Stab(Ay) — 1, (5.7)

Theorem 114. For § sufficiently small, the map my, s is a diffeomorphism onto its image. Furthermore,

the image contains the L§/2 points of some L? ball around A,.

The strategy of the proof will be to first show that d(1q0yn4, s is an isomorphism. Next we will
show that d(1q 4ymy, s is an isomorphism for alla € § 40,802, when § is sufficiently small. By -

equivariance, this establishes that m,, 5 is a local diffeomorphism. Then we will show that m,, 5 is
injective. Since an injective local diffeomorphism is a genuine diffeomorphism, it remains only to
show that the image contains an L ball. For this we use a continuity argument.

Definition 115. Let B, 2, denote the L§ 1, points of an L} ball of radius ¢ around Ao, equipped

with the L3 ) topology.

Since B, . 2 is contractible, it consists of a single connected component. Thus in order to show
732
that the image of my, 5 contains By, 12, it suffices to show that the image of my s is open, closed,

and nonempty in B, . 2, with respect to the L3 1, topology.

Lemma 116. The map dq,0yMa,,s, under the Sobolev completion specified in (5.7)), is an isomorphism.
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Proof. This essentially follows from the Hodge theorem. We compute

d(1d,0Ma,5(8, @) = —dayé + a.

The Hodge decomposition gives
1 0 1 % o
Q(X; gAd)L§/2 =dp,Q (X;gAd)Lg/2 ® ker [ Q) (X;Q(Aal)Lg/2 - O°(X; gAd)Lf/z :

Now —djy, ¢ is a general element of the first factor, and « is a general element of the second factor, hence
d(1d.0)Ma, s is surjective. The kernel of d(1q,0yma, s consists of £ € Lie(Stab(Ay)). Thus d(q,0)M4,.s is
an isomorphism. O

Lemma 117. If § sufficiently small, then d(1q oyMa, s> under the Sobolev completion specified in (5.7), is
an isomorphism for all a € CS)Ao,é,Lg/Z'

Proof. We compute

d(Id,a)on,(S(ga (X) = _dA()+a£ +ta= _dAof - [{1, &‘] + Q.

We would like to say that [a, &] is an Lg /z-small perturbation when ||a|| < d. This would imply that
d(1d,a)M4, s Temains an isomorphism under perturbation. However this is not true since we cannot
bound an L3, norm in terms of the lower regularity of an L} bound on a factor. Thus we need a
trick. The trick is that by the Hodge decomposition, it suffices to bound just the part which lies in
the im(dy,) component of the Hodge decomposition, since the ker(dzo) component is automatically
surjective, regardless of how big the perturbation is. The im (dy,) component is orthogonal to ker d} ,

SO

1 [4:€]

= C[[[4hy0.8] - a- dast]

L o = Cllla- dalllz, < Clallz 8]z, < oC

2 2
L1/2 Ll/

Thus for & sufficiently small, the map Q°(X;aaq) 2, = da, Q°(X; apd) 12, given by & > —dy & -
[a, ] im(d,,) 18 an isomorphism. mi
Corollary 118. If § is sufficiently small, then the image of my, s is open in B Aoel2, with respect to the
L3, topology.

Lemma 119. If § is sufficiently small, then my, 5, under the Sobolev completion specified in (5.7), is

injective.

Proof. We must show that if a,b € ng,é,Lﬁ,z with g - (A9 + a) = Ap + b, then g € Staby, ie.

da,g = 0. We want to prove this using Sobolev estimates. The strategy is as follows. We have a Hodge
decomposition of

0 o 1
g€ Q' (X;EndE) — Q(X;End E)
g=go+qi € ker (da,) @ ker (da,)".
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duyg =0 &= g1=0 & dyg1 =0 = ||dA0g1||%2 < C||dA0g1||i2 for C < 1.

Recall that
g-(Ap+a)=Ay+b & dus,g=ga-bg.

In four dimensions, dj = — % dyx, so recalling that d} a = 0 = d} b, we have

dy,da,g = — * da, (g x a— (xb)g)
= — % ((da,g) N *xa + (xb)da,g) .

Using the fact that d4,g = da,g1, take the inner product with g; to get

daoailly> < llgillps (allze + 1B11L0) [|daggill,-

S CLiAO(gI(E))f—>L4 “gl”LIZ,A() (lallgs + 1Bl o) [|daogull 2 -

We want to replace ||gi]| 2, with [|d4,g1]|;- Recall that
||£71||iiA0 = ||91||i2 + ||dA91||iz .
Since g; L kerd,,, we have a Poincare inequality
lda,gill7> = (g1}, daogn) = Ma(Ao) llgull7
where 11(Ay) is the first nonzero eigenvalue of the Laplacian d;ds on Q°(X; gl(E)). Thus

lails, < (1+ h40) ) sl

||dA0g1||iz < Cy 1+ M(A0)™) (lallps + 116llL4) ||dAogl||iz .

1
ZCLi 2y (End Y514V (1+A1(Ag)™)

we have injectivity. Recall that L? < L*. Thus if | a]| 12+ Ibll2 < & for & sufficiently small, then the
above inequality holds, so my s is injective on the slice. ]

Consequently,

Thus, as long as

llallzs, 1bllps <

5.9.2.1 Gauge equivalence is preserved under weak Lf limits

2 2
Lemma 120. Suppose a; =g b; — b, and there exist gi € (ng such that g; - (Ag + a;) = Ao + b;.
2
Then there exists a subsequence such that g; — g € G2 andg- (Ag+a) =b.
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2 2
Proof. From aq; = a, b; = bit follows that a; and b; are bounded in Lf and hence also in L*. Now
from

da,g9i = giai — bigi

it follows that ||da,gill;4 < ||gill;~ (laillzs + [1b;ll4). Thus g; is bounded in LiAo N L. Applying this
bound to the same inequality,

ldaagillz, < Cllgillg, o (Hailliz, +loilz, ).

LZ
Thus g; is Li 4, Dounded. Therefore, passing to a subsequence, g; — g. We must verify that g € Y.

Note that L3 < L* compactly for all1 < p < co. Choosing any fixed p and passing to a further
subsequence, g; — g pointwise almost everywhere. Thus g(x) € Gaq |xC gl(E) for almost all x, and
sog € ?L%.

It remains to show that g - (Ag + a) = b. This is equivalent to ds,g = ga — bg. Note that by

compactness of the embeddings L < L? and L < L?, on passing to a subsequence, we have strong
L? convergence g; — g, a; — a, and b; — b. It follows that that g;a; — b;g; — ga — bg in L! since

lgia; — bigi — (ga — bg)||; < |lgiai — gaill; + l|lgai — gal|x + ||bigi — bigllx + ||big — bgl|
< lgi = gll;2 Nlaill2 + ||gll;2 Nlai — all2 + 11bill 2 lgi — gll 2 + 11b; = bllz2 [|gll - -

Also, by compactness of the embedding L? < L! it follows that after passing to a subsequence,

1
da,gi £> da,g. Thus by uniqueness of limits in L1, it follows by taking the L' limit of both sides of
da,gi = giai — big; thatd,g = ga — bg. O

Theorem 121. If § is sufficiently small, then the image of ma s is closed in B, . 2, with respect to the
L3, topology.

2
Proof. Suppose A; = Ag + a; is a sequence in the image of m,, 5, and a; LLM a. By virtue of
being in the image of my g, it follows that there exist gauge transformations g; € ?Lg/z such that
gi(Ap + a;) = Ap + b; with b; € °§Ao,6,L§,2’ ie. dzobi = 0 and IIb;IILf < 4. It follows that for some
2

subsequence, b; t b. From Lemma (120} after passing to a further subsequence, there exists g € 9%
such that g - (Ag + a) = Ap + b. To show that Ay + a is in the image of m,, 5, we must show that
g€ ?Lé/z. We compute

dy,dag = = * da, (9 % a = (xb)g)
= —(da,9) - a+gdy a+b-dag.
2 8/5
/2’ 1/2°
This allows us to conclude that g € Lgﬁ, which is still borderline. Continuing to bootstrap in this
manner does not allow one to show that g is above the borderline. We need another trick.

The first two terms on the right are bounded in L7, , however the last term is only bounded in L
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Consider the operator Ly, : L2 n Lf/z given by Ly(g) := d}; da,g — b - da,g. This operator is elliptic,

possibly with kernel. The equation is

Lyg = —(da,9) - a + gdy a,

and the right hand side is bounded in Lf/z. This allows us to conclude that g € L2 /- However, note

that we can’t conclude any bound on ||g]| 3 unless for some reason we know that g is orthogonal to
5/2
the kernel of L.

O

5.10 Theta functions

Let V denote a real vector space of dimension n, equipped with a symmetric bilinear form Q :
VeV - R.

Note that Q induces a map, which we denote alsoby Q : V. — V* given by v = Q(v, —).

Definition 122. A symmetric bilinear form Q is said to be non-degenerate if Q : V.— V* is invertible.
In this case, we denote by Q7! both the inverse Q7! : V* — V and the corresponding symmetric
bilinear form Q7' : V* ® V* — R given by Q7 (a, B) := Q(QY(«), Q7(B)).

Remark 123. The bilinear form Q! satisfies Q7 (a, B) = (x(Q_l(/)’)) = ﬁ(Q‘l((x)).

Definition 124. A lattice (L, Q) of rank n is a free abelian group L of rank n equipped with a symmetric
bilinear form Q : L® L — R.

Remark 125. The set of isomorphisms Z" — L is a GL(n; Z)-torsor, where GL(#n; Z) denotes the set
of n X n integer matrices with determinant =+1.

Remark 126. One often considers L as a discrete subgroup of maximal rank inside some real vector
space V with a compatible inner product. The canonical choice of V is V = L ®7 R, and there is
a natural R-bilinear extension of Q from L to V. When Q is positive-definite, (L, Q) embeds into
Euclidean R”, uniquely up to an orthogonal transformation.

Definition 127. If (L, Q) is a lattice with Q non-degenerate, then the dual lattice is the non-degenerate
lattice (L*, Q7Y), where L* := Hom(L, Z).

Remark 128. The double-dual of (L, Q) is canonically isomorphic to (L, Q) induced by the evaluation
map ev : L — L** given by v - (a — a(v)), and Q' =q.

Remark 129. An invariant volume measure on V corresponds to an element of |[A"V*|, which
transforms according to the representation GL(n) — GL(1) given by g > |detg|. There is a duality

map |A"V*| ® [A"V| — R which associates to any invariant volume measure ¢ on V the invariant
volume measure 4! on V*.

Definition 130. The standard volume measure of a non-degenerate lattice (L, Q) is the positive
measure denoted by vdet Q, such that the hypercube of an orthonormal basis in V has unit volume.
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Theorem 131 (Poisson summation formula). As distributions on the vector space V, dual to the space
of Schwarz functions §(V'), written as a function of the variable v € V, we have the identity

> 8w —x) = ; (‘f 5 0; i)

x€L

where y denotes an arbitrary invariant positive measure on V, and u/u(V /L) is the unique invariant
measure on 'V which is normalized so that the torus V /L has unit measure.

Remark 132. This formula amounts to the statement that the Fourier transformation of the “Dirac
comb” supported on L is the Dirac comb of L*. Since the Dirac comb is periodic, it should be given
by a Fourier series, and the coefficients of this Fourier series, when suitably normalized, are all 1.

Proof. Suppose ¢ € S(V) is a test function. Then we must show that the distributions evaluate to
the same value on ¢. We introduce the “periodicized” function

¢p(v) 1= )" $lx +v) € C™(V/L).
x€el

This sum is absolutely convergent since ¢ decays rapidly. Note that

80 = [ 380~ x900)
/>

xel

which is the left-hand side of the identity. It suffices to show that ¢p(0) = f > el eZ”i“@)(p(v) p/u(V/L).
For this, we expand ¢p(v) in a Fourier series ¢p(v) = X 4er e~ e o compute the c,, take F to
be a fundamental domain for V/L. Then

o = /F 27180 g (0) (VL)

Z /F ez”i“(”)(/)(v +x)u/u(V/L)

x€L

=> /F () p/u(V /L)

x€L

- /V 0 §(0) i u(V /1.

Plugging in v = 0 into the Fourier transform gives
000 = Y = [ 370000 v /),
aEL* V aeLr

which agrees with the right hand side. o

Remark 133. It will also be useful to have the shifted version of Poisson summation, corresponding
to the substitution v = v — xp, which yields

_ U =2mia(xg) 2mia(v)
ov—x) = e e .
2, 009 = 7 2

x€L+xg ael*
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We also have the dual version

Z 0k —a) = y‘ly(V/L) Z p~2miog (x) p2mik(x)

aEL*+ag xeL

Definition 134. A lattice (L, Q) is positive-definite it Q(x, x) > 0 for all nonzero x € L.
Definition 135. A lattice (L, Q) is integral if Q : L® L — Z.

Lemma 136. (L, Q) is integral iff Q(L) C L*.

Definition 137. A lattice (L, Q) is unimodular if Q(L) = L*.

Remark 138. If (L, Q) is unimodular, then it is integral and non-degenerate.

Remark 139. Suppose {ey, ..., e,} is a basis for L. Let Q denote the matrix for Q in this basis. Then Q

is non-degenerate iff det Q # 0. The matrix of Q! in the dual basis is given by Q‘l. Furthermore,
(L, Q) is integral iff Q has integer entries. When (L, Q) is integral, the index of Q(L) c L* is the
absolute value of det Q. Finally, Q is unimodular iff Q both has integer entries and det Q = 1.

2 -1
-1 2
take V. = R? with Q = dx? + dyz, and ¢, = (V2,0), e; = (—\/I, \/g). The dual basis is e! =
(\/; , \/% ), 2 = (0, \/g ). The components of Q(e;) in the dual basis are the same as the components

of e;. We have Q(e;) = 2e! — €2, Q(ey) = —e' + 2¢?, detg =3 and Q7! = %( i ; ) Taking

u = VdetQ = |dx A dy|, we have u(R?/A;) = uler,e;) = V3, u™! = y/detQ! = |6x A0y
HR) A = u(e ) = (1 = 1/u(R?/4y).
Definition 141. The theta function of a positive-definite lattice (L, Q) is the function

.31
QL(T) - Z e(ZmT)EQ(x,x).

x€L

Example 140. The triangular lattice A, has rank 2, and in some basis, Q = ( ) We can

, and

Remark 142. 0; converges on the upper-half-plane. Under the change of variables 7 = it, it becomes
the real-valued function
OL(t) := ) e,

x€L

defined for R (t) > 0. Note the abuse of notation, since the function differs depending on the variable
used. If (L, Q) is integral, then under the change of variables g = ™, it becomes

0.(q) == Z qQ(x’x) = Z #{x e L|Q(x,x) =n}q".

xeLl neZsg

Note: 07(q) = 1+ 2q + 2q* + 2¢° + 24" + --- . Furthermore, 0,61, = 601,01,. In particular,
021 (q) = 0z(9)".
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Lemma 143. If (L, Q) is an integral and positive-definite lattice, then 0r(t + 2) = 0.(7).

o . _ rin) L Q)+ 27iQ(xx) _
Proof. This is a simple computation: 0;.(7 +2) = Y 1 € 2 = 0.(1). O

Lemma 144. If (L, Q) is a positive-definite lattice (integral or not), then 0r<(=1/7) = Ydet Q(V /L) (7/i)"/?6 (1),
where n = rank(L).

Proof. For simplicity consider t = 7/i, so that R(¢) > 0, and consider the double-integral

. 1
/ Z 8(]( _ 0()/ Me—ka(v)—Zm-iQ(v,v).
keVv* veVvV

acl*

/ 0r(v) det(tQ)‘le_Z”"k(“)—Z”f’l'%Q"(k,k).
vev keVv*

Note that

1
1:/6_2"5Q(U’U)\/detQ.
%

Completing the square, t-%Q(v, v)+ik(v) = %tQ(v+ itIQ7(k), v+it1Q (k) + %t‘lQ(Q_l(k), Q((k)).
Thus

. 1 11 1 , 11 -
/ ¢~ 2mik0)-2113000) [I5170) = ¢ 2T 1.iQ(k,k)/ 23 [Terq) = ¢ 27 3k,
veV

v'=v+it71Q(k)eV
Thus the double-integral is equal to
1144 1.1 _
[ D em e a0 2 3 a0 e gy i),
kev™ ael* ael*
On the other hand, reversing the order of integration, the double integral becomes
/ /det(tQ) Z e—2ﬂi(x(v)e—2ﬂt~%Q(v,U).
veV ael*

Poisson summation gives

= +/det(tQ)(V/L) Z S(v — x)e_zm'%Q(”’U) = +/det Q(V/L) t"726, (¢).

veV xel

The transformation t +— 1/t is equivalent to 7 — —1/7. Changing variables, we get the desired
result. o

Remark 145. 1f (L, Q) is unimodular, then Vdet Q(V /L) = 1 and 0+ = 0. Thus 0, satisfies 0;(1) =
0.(t +2) = (t/i)™20(-1/1), so O is a modular form of weight #/2, but only under a subgroup of
the full modular group. If Q is even, then 0;(7) = 6.(7 + 1) and 6;, does transform under the full
modular group.
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For k € Z+3, define the Eisenstein series

E(r) = @)™ > (m+nn)
(m,n)€eZ2\(0,0)

If k is odd, then Ei(r) = 0. The ring of modular forms under the full modular group is freely
generated by E4 and Eg. Note that

E4(q) = 1+ 2404 + 2160g* + 6720g° + 175204° + 302404™ + O(g"2),

Es(q) = 1 - 504q% — 16632q* — 1229764° + O(g®).

Remark: Another common convention is to take g = e2'7, which has the effect of g - /7 in the
above formulas.

Note that 0g,(q) = E4(q), since Eg is even, and E4(q) is the only modular form of weight 4, up to a
scaling factor, under the full modular group.
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Appendix A

Notation and conventions

This section is intended for reference only. Notations are explained, however the definitions and
explanations occur later in this chapter. Most of this section should make no sense to a beginner, so
the reader should not be intimidated.

The number systems Z, Q, R, and C respectively denote the integers, rationals, reals, and complex
numbers. The integers modulo k are denoted by the quotient Z/kZ, and often abbreviated as Z.
An equivalence class is denoted by square brackets, so [2] = [7] in Zs.

Unless otherwise specified, X will be a smooth compact oriented Riemannian manifold without
boundary of dimension #. Usually n = 4. The Riemannian metric is denoted by g. The vector space
of real-valued functions on X whose partial derivatives exist to all orders is denoted C*(X).

Integration [ f of a function f on a Riemannian manifold X is assumed to be with respect to the

Riemannian volume measure which has the local coordinate expression dvol, := ,/det gjjdx" - - - dx".

If E — X is a complex vector bundle (which is automatically assumed to be finite-dimensional), then
E* denotes the dual bundle and E denotes the conjugate bundle. The space of smooth sections of a
vector bundle E — X is denoted by I'(E). For s € I'(E) and « € T'(E*), the natural metric-independent
pairing of « and s denoted by « - s or s - a which gives a function in C*°(X). There is a natural antilinear
map E — E which is written s + §. If E is equipped with a Hermitian metric h, then the inner
product of s with itself is denoted by h(s,s) =s-s = Is|? € C*(X). A Hermitian metric determines a
complex linear isomorphism between E and E* given by § i h(—, s), where h(—, s) is shorthand for
the complex linear functional t — h(t,s).

Given s;,s, € I'(E) and a3, ap € T(E"), there is a natural evaluation map (a; ® a3)(s1,52) = (o -
sp)(az - 52) also sometimes denoted by (51 ® 52) - (o1 ® a2).

Two objects A and B are isomorphic, denoted A =~ B, if there exist f : A - Bandg: B — Asuch
that g o f = Id4 and f o g = Idp. If there is a specific isomorphism in mind, then A and B can be
identified with each other, and this is denoted by A = B. For example, if E is a real vector bundle
without metric, then E ~ E* ~ E*, while E = E* because the evaluation map ev : E — E* given
by ev(s) := « — «a - s for « € E* is a distinguished isomorphism.

The exterior algebra of a vector space or bundle is denoted by A®E. Differential forms are defined to
be Q°*(X) := I'(A*T*X), where T*X denotes the cotangent bundle. Differential forms with values in
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E are denoted by Q*(X; E) := I'((A*T*X) ® E). Often R or C also denote the corresponding trivial
vector bundle over X. There are natural identifications of real-valued forms Q°*(X;R) = Q°*(X),
smooth functions C*(X) = Q%X) = I'(R), and one-forms Q}(X) = I'(T*X).

The symbol e in a subscript or superscript is shorthand for some index p, quantified over all sensible
values of p. For instance, d : Q*(X) — Q°**(X) means that d : QP(X) —» QP (X) forp =
0,1,...,n—1 Itis also used to denote a cochain complex €* implicitly equipped with a differential,
usually denoted by d. Similarly, €, can denote a chain complex with differential 4.

If V e I(TX) is a vector field then 1y : Q*(X;E) — Q°!(X; E) denotes the contraction operator.
If « € QY(X), then ¢, : Q*(X;E) — Q°*1(X; E) denotes the wedge operator €,(8) := a A B. They
obey the algebraic relation €4ty + 1yey = (a - V)-, where (« - V) denotes the multiplication operator
corresponding to the function « - V. Evaluation of vectors on w € QF(X;E) is written as either
wW,...,V,)or (1 ®---®V,) - w, and is normalized to be W, - . Consequently, for one-forms
ap and ay,

V1®V2) - (a0 A az) = (a1 A az)(V1, V2)
= (a1 - Vi)(az - V2) = (a2 - Vi)(a - V2)
=MeV,-VeW): (ke a).

The operator A replaces tensor products of one-forms by wedge products, so
AMu® - ®@a®w)=a A ANy Aw,

where w € Q4(X; E), and thus A : QI(X; (T*X)®P ® E) — QOP*9(X; E), where (T*X)®P denotes the
p-fold tensor product. In particular, the conventions dictate that

AMa®a2)(V1,V2) =@ V2 = V2@ W) - (0 ® o). (A1)

When X is oriented and Riemannian, the Hodge star operator is denoted by x : Q*(X;E) —
Q" *(X;E). If « and f are R-valued differential forms of the same degree, then their inner product
a - B is determined by (« - B)dvoly = a A *fB. In the case n = 4 and w € Q*(X;E), there are
orthogonal projection operators w™ := %(w + *w) and 0™ := %(a) — %w) to self-dual forms Q*(X; E)
and anti-self-dual forms Q™ (X; E).

The covariant derivative with respect to the Levi-Civita connection is denoted by either V, or Vi for
emphasis. For any bundle E associated to the tangent bundle, the induced connection uses the same
symbols. If s € I'(E), then Vs € I(T*X ® E).

Usually P denotes a smooth principa bundle with gauge group G. It is assumed that G is a compact
Lie group with Lie algebra g, and that g is equipped with a bi-invariant Euclidean metric denoted (£, x).
The adjoint bundles of P are denoted by Gaq and gaq4. The group of smooth automorphisms of P is
denoted by & := I'(Gaq). The space of connections in P is denoted by &/p or simply &/. Usually A € <.
The induced covariant derivative on any associated bundle is denoted by V4. Often Ay € & denotes
a chosen basepoint, sometimes known as a “fiducial connection” The difference A — Ay € Q(X; gad)
is then a Lie-algebra-valued one-form. The curvature is denoted by F4 € Q%(X;04)-

! According to an old joke regarding the common misspelling, a principle bundle has a moral fiber. This joke is due
to Allen Knutson and popularized in J. P. Serre’s classic lecture “How to write mathematics badly”
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For Lie-algebra-valued differential forms « and f, infix notation specifies an operation on forms,
while outfix notation specifies an operation on the Lie algebra. For example, (& A f3) is a real-valued
differential form obtained by wedging the form part while taking the inner product on the Lie algebra.
Another example is [« - ], which is a Lie-algebra-valued function obtained from taking the inner
product of differential forms and applying the Lie bracket.

If E; = X and E, — X are vector bundles associated to principal bundles P, — X and P, — X with
connections A € &/p and B € op,, then the induced covariant derivative on E; ® E; is

Vags := Va®1Idg + Ids ® Vp.

If one of the connections is the Levi-Civita connection, then Vg1 is abbreviated to V 4.

The exterior covariant derivative on a vector bundle E associated to a principal bundle with connection
Ais defined as
da=AoVu:Q'GE) > Q*"'(GE).

In the case E = R and A is the trivial connection, d4 = d is the ordinary exterior derivative. Curvature
satisfies
- 1
FA+a—FA+dAa+§[a/\a].

Suppose P is a principal bundle with structure group G and connection A, and G has a vector space
representation p : G — End(V). Then on the associated vector bundle E := P X, V, the second
exterior derivative dﬁ acts as p(Fa)A.

Suppose V is a vector field and V is a covariant derivative on a vector bundle E, where the connection
A is left implicit. For a section s € I'(E), it is common to let Vys denote the contraction V - Vs of
V with the T*X factor of Vs. The second covariant derivative is V2s € I'(T*X ® T*X ® E). Iterated
covariant derivatives satisfy

k _ k4l k
VvVine-ew, = Yvewe-ew, T Vv, (We-eW,)-

For example,

View = VvVw — Vy,w.

The Riemannian curvature, denoted Rm € Q?(X;s0(TX)), is the curvature Fic of the orthonormal
frame bundle of X. For a real vector bundle E — X with Euclidean metric, so(E) denotes the bundle
of skew-symmetric endomorphisms of E.

To compute the standard action of Rm on T'X, contract vector fields V and W with the two-form part
to obtain Rm(V, W) e I'(so(TX)). Evaluating the endomorphism on another vector field S produces
the vector field Rm(V, W)S e I'(TX), given by

Rm(V, W)S = (d2:8)(V. W) = (Av2s)(v.w) B w2 s,

The Ricci tensor is
Ric(W, S) := Tr(V + Rm(V, W)S) € I(Sym*T*X),

where Tr denotes the trace, and Sym?(E*) denotes homogeneous symmetric polynomials of degree p
on the fibers of E. The scalar curvature Sc is the metric contraction of the Ricci curvature.
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Suppose V is a real vector space (again assumed to be finite-dimensional). Then gI(V) denotes the
Lie algebra of endomorphisms of V. The dual representation L +— —L* is an isomorphism of Lie
algebras gl(V) = gl(V*). If V has a non-degenerate symmetric bilinear form g, then V = V* by the
“musical isomorphisms” v — v := g(v, —) and inverse & > . The dual representation is compatible
with the musical isomorphisms precisely when (La*)’ = —L*a, which is the definition of L € so(V).
Consequently, as Rm € Q*(X;s0(TX)),

b
V%/®W—W®Va = (Rm(V, W)“ﬁ) = —Rm(V, W)*a.

Now suppose {ey, ..., e,} is a basis for V, and let {el, e e”} denote the dual basis. For L € gl(V),
the components are L; := ¢’ - Lej. If v = v/ej (where repeated indices are implicitly summed), then

Lv = (L;vf) e;. f a = ajel € V*, then the dual map is L'a = (L;oci) el If g(ei, ej) = gij, then

(); = gijvj and (af) = a;g', where g is the inverse matrix so that g,'jgjk = 85‘, where 6:‘ is the
Kronecker delta. The condition L € so(V) is equivalent to —L; = gigLigki. If {e;} is orthonormal and

g is positive-definite so that g;; = §;, then the condition becomes simply —L]’: = L]l

If {e;} is a local frame for TX with local coframe {ei}, then the components and contractions of
Riemannian curvature are defined by

R = e - Rm(e;, ¢)er,
Rj¢ := R;j'¢ = Ric(ej, eg),
ik
Sc:= R]kg] .
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Appendix B

Cohomology

B.1 How to invent de Rham cohomology

Cohomology of manifolds is essentially the deep study of locally-constant functions. To begin,
HO(X; R) is defined to be the space of locally-constant R-valued functions on a manifold X. We take
R to be a commutative ring, usually R, Z, or Z,. To obtain a locally-constant function on X, we may
freely assign any value to each connected component of X. Thus H(X; R) is the Cartesian product of
several copies of R. Denoting the set of connected components of X by my(X), we summarize this by

H°(X;R) = ]_[ R = R™&X),
mo(X)

We note several important properties of H(X; R) which will extend to higher cohomology.

e« H'(X;R)isa ring.

o If X is compact, then 77y(X) is finite, and hence H’(X; R) is a finite-dimensional vector space
(or module when R is not a field) over R.

« A ring homomorphism s : R — R’ induces a ring homomorphism, also denoted by 4,
h:H°(X;R) —» H'(X;R),

given by
h(f):=hof = (xm h(f(x))) € H°(X;R).

o A smooth map ¢ : X — Y of manifolds induces a ring homomorphism in the opposite

direction
¢* : H'(Y;R) — H°(X; R).

In particular, if f € H(Y;R), then
¢"(f) :=fo¢ = (x> f($(x))) € H'(X;R).
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It would seem that this is the end of the story for locally-constant functions. However, by examining
how locally-constant functions restrict to open subsets, we will discover a rigid structure which leads
naturally to the definition of H?(X; R) for p > 0.

Suppose A and B are open subsets of X such that A U B = X. We have natural inclusion maps which

are smooth
A
SN
AN X
JjB ‘A/
B

The induced maps on H(X; R) are restriction maps, which point in the opposite direction.

H°(A;R)
H°(ANB;R) H(X;R)
HO(B;R)

We combine the restriction maps i and i}, into a linear map
iy x iy, : H(X;R) —» H(A;R) x H(B; R).

For concreteness, let’s consider X = S', with A and B two arcs which cover X, and R = R. Then the

diagram becomes
R
N\
R? R
N
R

and i, X i}, : R — R?is given by A — ( i ), because the locally constant function f(x) = A restricts
as A to both A and B.

Given two locally-constant functions f4 and fz on A and B, one can ask whether the pair extends to
some function on X. This is equivalent to asking whether the pair (fa, fp) is in the image of i} X 7.
The image of i, X i, determines a subspace of H 9(A; R) x H°(B; R) which, in our example, corresponds

to the span of( 1 )

With this subspace in mind, we note that there are two primary ways to specify a vector subspace. A
subspace is determined either parametrically, as the image of some linear map such as i, X iy, or
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instead via some constraint equations, which amount to the kernel of some linear map. A major
theme of homological algebra is that whenever a subspace appears as either an image or kernel, one
should seek a description of the alternate form. Thus we seek to characterize the image of i} X i} as
the kernel of some other map.

The answer is easily expressed in words. Two locally-constant functions f4 and fz extend to X iff
they agree on the overlap A N B. Equivalently, we require that the difference of the restriction maps
vanishes:

Jalfa) — jp(fe) = 0.
In our example, if fo(a) = A4 and fp(b) = Ap, then the pair (f4, fp) is represented by the vector ( iA ),
B

Aa— A

Aa— Mg ) In summary, we have

and j,, — jj is represented by the vector (

Ja~Js

-5k X sk
HOOXG R) 2% HO(A; R) x HO(B; R) —“—%~ HO(A N B; R),
which for our example in matrix notation is

b Gs)

R R R2,

When we are in this general situation

d d
My ——= M, —= M;

with im d; = ker d,, we say that this diagram is exact at M,. Half of this equality is very simple to
check: im d; C ker d,, which amounts to the fact that d, o d; = 0. In our example, we easily verify

that
1 -1 1y (O
1 -1)\1) \o)
Exactness is a convenient language to convey several properties. For instance,

0—% M, — 2 My
means that d; is injective, and

M~ My 20
means that d; is surjective.

An exact sequence is a chain of maps which are exact. For instance, exactness of

0 M M, 0
means that d; is simultaneously injective and surjective, hence an isomorphism. Exactness of

0 —= M~ My 2o My — 0
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means that d, is surjective, d, is injective, and that M3 = M,/M,. Such an exact sequence with three
nonzero terms sandwiched by zeroes arises frequently, and is called a short exact sequence.

We wish to extend everything to an exact sequence. Note that i}, X i} is injective, since A and B
cover X, and the only way for a function to restrict as zero to both A and B is if that function is zero
everywhere. Hence we can add a zero on the left:

Ja=Js

0 HY(X;R) I HY(A;R) x HY(B; R) —=> H°(A N B;R). (B.1)

In general, the image of j; — f is a proper subspace of H(A N B; R). In our example, it is the span of
1
( ) ) To continue the exact sequence, we must find some natural space, and a map to this space,

such that the kernel is the image of j; — j5. This space will be H'(X; R).

The failure of j; — j; to be surjective is due to the fact that locally constant functions are very rigid.

Continuous functions are more flexible. Denote by C(X) the ring of continuous functions on X.
Then

Theorem 146.

i

0 COO 25 oAy x C(B) —275 can B)

0

is a short exact sequence.

Proof. We have already demonstrated everything except that j, — ji. To prove this, we construct a
right-inverse.

To construct a right-inverse, it suffices to construct functions ¢4, ¢p € C(X) such that ¢4 + ¢p =1,
¢4 vanishes outside of A, and ¢p vanishes outside of B. Given f € C(A N B), consider the map

C(ANB) = C(A) x C(B) given by f — ( ¢(§ ff ) Note that f is only defined on A N B. But ¢pf
—bu -

makes sense as a continuous function on all of A since ¢p = 0 on A — (A N B), and we can extend by

zero. Similarly, —¢4f makes sense on B. Finally we verify that (j, — j;) o ( ¢(§ gl f ) = f, so that our
—4 -

map is indeed a right-inverse. We obtain for x € AN B,

(a(@B ) +(p(Pa-fN(x) = @p(jalx))-f (ja(x))+a(ip(x))-f (jB(x)) = Pp(x)f (x)+dalx)f (x) = 1:f (x),
as desired. The proof is finished up to the following lemma. ]

Lemma 147. Let X be a smooth manifold, and suppose that {U;};c; is an open cover of X. Then there
exists a collection of functions {¢;},.; with the following properties.

o Each ¢; > 0, and the closure of the set where ¢; > 0 is contained in Uj.

o For any x € X only finitely many ¢;(x) are nonzero.
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o Forany x € X, the finite sum Y;c; ¢i(x) = L

o Each ¢; € C*(X), meaning that ¢; and all its partial derivatives are continuous.

Such a collection of functions is called a partition of unity subordinate to the cover {U;};c;. The
construction is standard, and thus not included here. It relies on the existence of smooth cutoff

functions such as
) e /* x>0,
x) =
X 0 x < 0.

By the same argument, it follows that

W c(A) x C¥(B) - C®(AN B)

0 0

C*(X)

is exact.

To summarize the situation up to now, smooth functions have partitions of unity while locally-
constant functions do not. We need to introduce H?(X; R) with p > 0 in order to continue the exact

sequence (B.1).

Let B ¢ R” be the unit n-ball. Let’s try to extend
0 — H°(B;R) — C*(B; R),

where the map on the right is the inclusion of constant functions as smooth functions. A smooth
function is locally constant when

Vf:gdxl+---+idx"=0.

Ox! ox"
We define
Q°(X) := C¥(X;R),
and
QY(B) = {ocldxl + -+ a,dx" | each a; € QO(B)} )
Thus

0 — H°(B; R) — Q°(B) —— Q(B)

is exact. But the operator V is not surjective. When n = 2 or 3, the image of V is characterized as the

set of & € QY(B) such that curl & = 0. In general, if @; = %, then

doy _ O _ 0%
Oxi  O0xiox)  Oxt

by symmetry of mixed partial derivatives, which holds for all smooth functions. Thus we must
(906,'

require symmetry of the matrix (@) " Equivalently, we must require that the antisymmetric part
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of (a—i") y must vanish. Symbolically, we define

Ox/
1 n day | | 1 dor . 1
Vimdx + -+ a,dx") : = —dx ®dx +---+ —dx" ®dx' +
ox! ox"
+...+
2 0% a4 2% g
Ox! ox"

Next we define A to be the operator which replaces the tensor product with the antisymmetrized
tensor product, known as the wedge product A. Thus

ou; . ) .
da := AV(x) = Z (6_x]’ - %) dx' A dx.

i<j
We are led naturally to the definitions

QP(B) = { Z (Xiliz...ipdxil A dxiz VANREIIVAN dxip} ,

i1<i2<-~~<ip

d : O (B) - QP*(B).

Since O?(B) = 0 for p > n, we are led to the sequence

d

0 —— H%(B; R) —— QO(B) 0(B) -4 QO"(B) — 0.

By symmetry of mixed partial derivatives, it follows that d o d = 0.

Lemma 148 (Poincaré lemma). This sequence is exact.

This lemma is standard, so we omit it. Since d> = 0, we know that im d c kerd. To show that
im d > kerd, one constructs for any « € QP(B) such that da = 0 an € QP7}(B) which satisfies
dn = a.

We wish to replace B by a more general manifold X. For this, we must define the transformation law
for dx' under change of coordinates. If ¢ : Y — X is a smooth map, so that x = ¢(y), then

¢* : ONY) « QN(X)

according to
- T AV L
o (dx) = a9 g
ay’ oy
This transformaton is known as pull-back, and reverses the direction of arrows. It extends tensorialy,
and, for example on Q" (X),

1 ) n ) i
¢*(dx' A - Adx™) = Zijdyﬂ ARERWA ng dyn = det(%) dy' A+ Ady".
i ' y
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We can view Q!(X) as sections of the cotangent bundle T*X. The cotangent space at a point x is
denoted T, X, and is defined as the vector space of smooth functions {f € C*(X) | f(x) = 0} which
vanish at x, under the quotient relation that [f] ~ [g] iff f and g agree to first-order, i.e. in any
(equivalently every) coordinate chart, (df)|, = (dg)|.. This is coordinate-independent, and defines a
vector space of dimension n = dim X.

The tangent space...

It is no longer true that
0 —— HO(X;R) — Q°(X) -4~ 0!(X) 4~ ... —%4 O"(X) —=0

is exact. However, since d is defined locally, the equation d* = 0 continues to hold, so im d C ker d.
A chain of maps

d d d

ce— MPL MP MPtl

for which d? = 0 is called a cochain complex. The defect from a cochain complex being exact is
measured by the cohomology

d
ker(MP — MPH
(M, d) = M 2 M)

im (VP15 Mp)
We define the de Rham cohomology
Hi (X) = H/(Q°(X), d),

which is the cohomology of the de Rham cochain complex
0 — 0°(X) —4> (X)) 42— .. —%& Q" (X) —0.

The first important property of the de Rham complex is that HgR(X ) = H%(X;R). The second
important property is that since one can multiply elements of Q7 (X) by smooth functions, techniques
involving partitions of unity apply. To summarize these two properties, one says that the de Rham
complex is a “fine resolution of the constant sheaf”

There is a notion called “sheat cohomology” and de Rham cohomology is a means of computing it.
In this sense, HP(X;R) = HﬁR(X).

Suppose once again that X = A U B for open subsets A and B. By the same argument as before,

AV ok ok
0 2 QP(A) x QP(B) 2~ (AN B)

AP (X)

0
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is exact. Moreover, these maps fit together into a huge commutative diagram

d d d

0 OPHX) —25 prI4) x PH(B) A5 p+(4 A B) 0
d d d

0 OP(X) OP(A) x QP(B) — 2" oP(ANB) ——0
d d d

0 1) —25  p-104) x P-1(B) 272 p-1(A ( B) 0
d d d

This is abbreviated by
0—— 0 (X) 25 e (4) x 0*(B) 272 0 (AN B) — 0.

which is called a short exact sequence of cochain complexes. The big result from commutative algebra
is that a short exact sequence of cochain complexes induces a long exact sequence on cohomology.
Specifically, if

0 et pe9 e 0

is a short exact sequence of cochain complexes, then there is an exact sequence of the form

odo
B d) L HP(D*, d) L HP (Y, ) S 0, d) L
Thus we obtain our desired extension

]A ]B

0 HOXGR) 25 04 R) x HO(B: R) =%+ H%(A 1 B: R) >
Q HL (X) H, (A) X H., (B) H (AN B) )
L H,(X) H3,(A) X H3;(B) H3;(ANB) )

-

B.2 How to compute with de Rham cohomology

Functoriality. Identity maps to identity. Composition maps to composition.
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B.21 Homotopy invariance

Homotopy

Definition. A (smooth) homotopy between twomaps f; : X — Y, i € {0,1} is a (smooth) continuous
map f : X X [0,1] = Y such that f; = flxxqi).

Both homotopy and smooth homotopy are equivalence relations. Between two smooth manifolds,
one could choose between either smooth homotopy or regular continuous homotopy. Conveniently,
these notions are essentially equivalent.

Theorem (Smooth approximation). Any continuous map f : X — Y between smooth manifolds is
homotopic to a smooth map. Moreover, if fy and f, are homotopic, then they are smoothly homotopic.

Thus homotopy classes of maps between smooth manifolds are equivalent, regardless of whether or
not the maps are required to be smooth.

In the homotopy category of continuous maps modulo homotopy, let’s examine the notion of iso-
morphism, which is called homotopy equivalence. The morphism represented by f : X — Y is an
isomorphism if there existsamap g: Y — X such thatgo f ~ Idx and f o g ~ Idy. For example,
the inclusion of f : ' < R? - {0} is a homotopy equivalence since g : R? — {0} — S! defined by
x — x/ |x| satisfiesgo f =Idgi,and f o g: R2 - {0} - RZ - {0} by x = x/ |x| is homotopic to the
identity by
X
= —
t+0-1)|x|

As in this example, a noncompact manifold can be homotopy equivalent to a manifold of a lower
dimension. Any contractible manifold is homotopy equivalent to a point.

X

In order to compute cohomology, it is very important to be able to deform things. The key idea is
that homotopic maps produce identical maps on cohomology.

Definition 149. Two smooth maps fy and f; : X — Y are smoothly homotopic if there exists a smooth
function f : [0,1]; X X — Y such that fy = fi=¢ and fi = f;=. In this case, we write f, ~ f;.

Theorem 150. If fo = fi, then fi = f" : H3,(Y) — H3,(X).

The symbol €* is an abbreviation for “G” for all p”

As an important consequence, suppose f : X — Yandg:Y — Xsatisfy f og ~ Idy andgo f ~ Idx.
Then g* o f* = Idge(y) and f* o g* = Idg+(x). Thus f* is invertible, and thus an isomorphism. Such a
map f is called a homotopy equivalence. Thus a homotopy equivalence induces an isomorphism on
cohomology.

We call two spaces X and Y homotopy equivalent if there exists a homotopy equivalence f : X — Y.
We write X = Y.

B" ~ pt.
R” — {0} ~ §"L.
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Use Mayer-Vietoris to prove cohomology of spheres. Cohomology of CP?.

Suppose we have an arbitrary linear map L : QP(Y) — Q4(X). Consider the relevant portion of the
de Rham complexes

P(Y) =4 or(y) —E rt(y)
|
Q11(X) 4~ Q1(X) —% QI (X)

In order for K to induce a map on cohomology, it must map ker (QP (Y) - QP +1(Y)) toker (Qq (X) - QI(X )).
Then we can try to write L [w] := [Lw]. To check that this is well-defined, independent of the choice
of representative, we must verify the following equivalent conditions

o [Lw] = [L (w +dn)] forall y € QI7(X),
o [Ldn] = 0forally € QI74(X),
« Forall # € w77} (X) there exists some v € QP71(X) such that Ldy = dv,

o L mapsim (QP_I(Y) — QP(Y)) to im (Qq_l(X) — Qq(X)).

There are two simple conditions under which these conditions are trivially satisfied.

Lemma 151. For arbitrary linear maps K and K’ as in

QP(Y) = 0r(y) —E rt(Y)
K K’
QI(X) — 04(X) — Q17 (X)

the compositions d oK and K’ od both induce the zero map HP(Y) — H1(X). In particular, doK+K’od
induce the zero map.

Proof. First, for any w € QF(Y) by definition [d(Kw)] = 0. Second, if w € kerd, then [K'dw] =
[K'0] = 0. O

Associated to each homotopy f : [0,1]; X X — Y there is a collection of operators K : Q*(Y) —
Q°*71(X) such that the difference = 1o (YY) — Q*(X) is given by
fi - fr=dK +Kd. (B.2)

Thus the difference must vanish on cohomology.

This equation has the following dual geometric interpretation. Consider a cylinder as a geometric
shape. Then f* and f; represent the top and bottom caps of the cylinder. Considering K as an
extrusion operator acting on the disc, Kd represents the extrusion of the circle, which is the side of
the cylinder, while dK represents the boundary of the extruded disc, which is the boundary of the
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cylinder itself. By an orientation convention, the side of the cylinder cancels, leaving just the top and
bottom remaining.

The operator K is assembled as follows. For each ¢, denote by i; the restriction of Q°([0,1]; X X) to
Q°*(X). There is a composition

Q*(Y) —f:Q’([O, 1]; X X) o Q*([0,1], x X) LA Q*1(X).

Define K := [} if 015, o f* dt.

Lemma 152 (Cartan homotopy formula). If V is a vector field on X, then Lyw = diyw + iydw.

We compute
fi=fo=oi) = (foio)

g

:/O a(folt)*dt
1

d-* *

=/0 Elt of"dt
1

:/ ifOZaIOf*dt
0
1

:/(ideOtatOf*+if013tOdOf*)dt
0
1

:/ (doifoug, of +ifoiy of od)dt
0
=dK + Kd.

Integration

Let X be an n-manifold. Given two overlapping coordinate charts ¢; : U; — R", i € {1,2}, the
transition function ¢ o ¢;! is invertible, and hence the Jacobian determinant is nowhere zero. It is
orientation-preserving if the Jacobian is positive, and orientation-reversing if the Jacobian is negative.
X is said to be oriented if it comes equipped with an atlas where all the transition functions are
orientation-preserving. Thus the coordinate charts define a consisitent orientation.

The Jacobian determinant arises in differential forms as follows. Given a change of coordinates
f:Y =X,

1

Pl A ndety = P n o n O
oyn

n
Qyin

) Ox!
dy" = det (_x) dy' Ao A dy".
oy

The determinant is characterized by multilinearity and antisymmetry.

Any nowhere-vanishing w € (0"(X) determines an orientation, where a coordinate chart is positively-
oriented if dx' A --- A dx" is a positive function multiple of w. Conversely, any orientation is
determined by such a nowhere-vanishing w € Q"(X).
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If X is oriented, then w € Q"(X) transforms as an integrand: if @ = w(x) dx! A - - - A dx", then

f(w) = w(x(y))

det (a_x)‘ dy' Ao A dy".
ay!

If X is compact, possibly with boundary, then the integrand is bounded. Then integration makes
sense as a linear map f v Q"(X) — R. Furthermore, Stokes’ theorem is the statement that for the
inclusion i : 0X — X, this diagram commutes:

QX)) = Q" 1(0X), ie. / i*(w) = / dw.
0X X
ld jfax
S
O'X)—— =R

Theorem. Suppose X is a compact smooth oriented manifold with boundary 0X. There does not exist
a smooth retraction map r : X — 0X, i.e. a map such that

Idsx

— T

Proof. Suppose such an r exists. Apply the functor Q"~1. Then
Id}
Q"1(3X) —— 0" (0) —= Q"(0X) .
The cochain diagram and Stokes’ theorem give linear maps
Id,
Q"1(3X) —— 01 (0) —= Q"(0X) .

T

QM(0X) ——— O"(X) ———R

The orientation on X induces an orientation on dX. Let w € Q"7'(0X) be a form inducing this
orientation. Thus w is nowhere-vanishing, and positive in each coordinate chart for 0X. Consider w
in the upper-left of this diagram, and its eventual image in R in the lower-right. We can follow the
arrows in any direction. Going across the top, we get Id}, w = w in the upper-right. By the positivity
of w in each coordinate chart, [, > 0. Alternatively, following d on the left, by the Pauli exclusion
principle Q"(0X) = {0} since n > dim 0X. Since the maps are linear, we must get zero going along
the bottom row. This is the contradiction. o

What can be done with cohomology classes?

Suppose [w] € H*(X;R). Suppose Y is a compact oriented k-manifold without boundary, and
suppose f : Y — X. I claim we can “evaluate” f(Y) on [w] by the following formula:

. [w]) = /Y F(@).
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To show that this is well-defined, we must show that a different representative, [w + dy| = [w], leads
to the same result. Indeed, the difference

Golanhy = [ ran = [aro= [ fo-o

Moreover, I claim that the result depends only on the oriented bordism class of f. Specifically, if W is
a k + 1-dimensional compact oriented manifold with W =Y LI Y’,and f : W — X with f|y = f,

then (f, [w]) = <f ly’, [a)]>. This also follows from Stokes” theorem:

(f ly) = <(f, [w]>=/awf*(w)=/Wdf*(w)=/wf*(dw):0.

This shows we have a well-defined pairing
QX)) x H*(XGR) - R.

This pairing is functorial in that if ¢ : X — X’, then

(1.4 [w]) = / £ @) = ([0 f] . [w]) = (. [f] . [@])-

Orientation of CP?

One important property of cohomology is that the wedge product on forms induces a product on
cohomology called the cup product.

[a] — [B] := [a A pB].

This is well-defined and functorial.

Recall the example of X = CP?2. It has a Kihler form w € Q*(CP?). It satisfies dw = 0, and
w A w € Q*(CP?) is a volume form, which is positive for the usual orientation of CP?. Indeed,

2 —
<[CP],[w]v[w]>—/CP2w/\w>O.

To repeat the previous argument, suppose ¢ : CP? — CP?isan orientation-preserving diffeomor-
phism. Then ¢*([w]) = A [w] for some A € R — {0}. It follows that

([eP2]. (@] = [@]) = (¢. [CP?] . 10] = le]) = ([EP?].¢" (@] = [@D) = -2*([CP?]. 0] = [w]).
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Triangulation

A more involved study of cohomology shows that, for similar reasons, CP? is not the boundary of
any 5-manifold. For this reason, we have that

[CP?| # 0 € Q°(p).
Before knowing this fact, one may suspect that the pairing
Q°X) ® H*(X;R) - R

is nondegenerate, i.e. that Qio (X) ® R is dual to H*(X; R). However, since H k(pt; R) =0 for k > 0,
this is clearly not the case.

A better candidate for the dual to cohomology is called homology. It amounts to bordism plus
triangulation. Any smooth manifold admits a triangulation. If X is a convex subset of R”, then
H(X) = 0 for k > 0. Given a triangulation (for example, consider f : CP? — X) and a choice of
vertex v € X, we can form the cone Kf. As a linear combination of simplices (hypertriangles), it
satisfies the relation f = 0Kf — Kdf. In particular, if 0f = 0, then f = dKf, so every closed surface
is a boundary in homology.

There is a map Qio (X) — Hy(X), and the pairing factors as
QX)) ® H*(X;R) — Hix(X) ® H'(X;R) — R.

This map is nondegenerate.

Singular cohomology

We take an alternative approach to locally constant functions which leads to triangulations from the
outset.

Define €°(X) to be the vector space of arbitrary functions
€' X):={f: X - R}.

A function f € €°(X) is locally constant iff every continuous path y : [0,1] — U satisfies f(y(1)) —
f(y(0)) = 0.

Define 1(X) to be the vector space of arbitrary functions
€'(X) := {g: |cts paths in X} — R}
and define the linear map

d:6°X) - ¢'(X), (B.3)
df == [y = fiy()) = f(y(0))] .
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Then f € €°(X) is constant iff df = 0. We proceed in the same way as before. Suppose X = B is
some ball. We resolve im(d) ¢ €!(B).

Let A be a model triangle with oriented edges
01 03

0,
Define €2(U) to be the vector space of arbitrary functions
©*(B) := {h : {continuous maps ¢ : A — B} — R}.
Define

d: €'(B) » €*(B), (B.4)
dg := [0 - g(oly,) — glols,) + g(ols,)] -

Suppose A has vertices

b
and g = df. Then
d*f =dg = [0+ g(ola) - g(ala,) + g(als;)] (B.5)

= [0 df(als,) — df(als,) + df (als,)]
= o = (£0®) - flo@)) - (f() - fo@)) + (flote) - f®)) |
=g+ 0]
= 0.
If Uisaball, thendg =0 <= g = df. Using simplices, we can continue the resolution, and obtain
the complex of singular cochains
0—- %' U) - %) > €*U)—> ---
resolving R ¢ €°(U).
For a manifold M which is not necessarily a ball, we form the complex
0— B°M) - B (M) - BZ(M) — - -

with singular cohomology

H‘;ng(M; R) = H?(M;R).
Singular cohomology makes sense for arbitrary topological spaces, not just manifolds. Singular
cohomology also makes sense with values any ring in place of R.
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There are other variants of cohomology which are naturally isomorphic to de Rham cohomology and
singular cohomology. For example, Cech cohomology arises from characterizing locally constant
functions f as those for which, given an open cover of X, there exists a refinement of that cover such
that f |y is constant for each U.

There are variants of cohomology which are distinct from the standard cohomology theories called
generalized cohomology theories. These satisty the Eilenberg-Steenrod axioms which characterize
cohomology, but differ in that H*(pt) can be more interesting. Oriented bordism is such an example.

Poincaré duality

If X is a compact oriented manifold without boundary of dimension #, and if Y ¢ X is a submanifold
of dimension k, then it is possible to construct a closed differential form wy € Q" *(X) such that
dwy = 0, and wy vanishes outside an arbitrarily small neighborhood of Y. Moreover, one arranges
that wy integrates to 1 on each fiber of the normal bundle. In this case, the wedge product corresponds
to oriented intersection. If Y’ is another submanifold which is transverse to Y, then wy A wy- vanishes
outside a small neighborhood of Y N'Y’, and also integrates to 1 on each fiber of the normal bundle. In
the case that Y and Y intersect in a finite set of points, [wy] — [wy’] € H", and ([X], [wy] — [wy’])
gives the signed count of these points. In this way, cohomology encodes intersection theory.

B.3 General coefficients for cohomology

There are no fractions involved in the definition of singular cohomology. Thus it makes sense to
replace all instances of R by Z in the definition of singular cohomology. This version resolves
the sheaf of locally constant Z-valued functions, and is more delicate and powerful than its R
counterpart. More generally, this construction makes sense over any abelian group A, which we
denote with cochain groups C*(X; A) and cohomology groups H*(X; A). There is a cup product
structure whenever A is a ring R. Most common are R € {R, Z, Z,}.

Sadly, de Rham theory is capable only of computing H*(X; R).

There is a “universal coefficient theorem” which computes cohomology with general coefficients, but
first we need homology.

B.4 Singular homology

We observe that CP(X; A) is the dual space
CP(X; A) = Cp(X; A)* := Hom(C,(X; A), A),

where C,(X; A) is the vector space with a basis element corresponding to each ¢ € A,(X). In other
words, finite formal linear combinations

Cp(XGA) = Z ¢y 0, where finitely many ¢, € A are nonzero.
0€Ap(X)

117



Furthermore, there is a linear differential 9 : C,(X; A) — C,_1(X; A) determined by
p .
do = ) (-1)'Fio,
i=0

satisfying 6% = 0. This fits into a sequence
-5 G0 5 G S G,
where we leave A implicity for brevity. The dual of this sequence is precisely the sequence
) S S xS -
of singular cohomology. We define singular homology

ker (Cp(X) = Cpa(X))

H,(X) := .
P image (Cp+1(X) — CP(X))

For example, Hy(X; A) = Afcomponents(X) - Also if X is connected, then Hy(X; Z) = 7Tlab (X, x0), where
7Tlab denotes the abelianization of the fundamental group. In particular, for the Poincaré homology
sphere P, H\(P; Z) = 0.

B.5 Universal coeflicients and Poincaré duality

Cohomology is dual to homology in two distinct ways: universal coefficients and Poincaré duality.

The more straightforward is the universal coefficient theorem. One might hope that since cochains
are dual to chains, maybe cohomology is dual to homology. This is almost true, but not quite. The
situation is described by the split exact sequence

0 — Ext(H;_1(X;Z),A) » H'(X; A) - Hom(H;(X;2Z),A) — 0.

Whenever we have a short exact sequence of abelian groups0 - A — B — C — 0, it follows that A
can be identified with its image A ¢ Band C = B/A. (These are straightforward consequences of the
definition of exactness.) The term split means that there is a subgroup of B representing the quotient
group C, so that B = A @ C. (However, this splitting it rarely unique.)

To be more concrete regarding the universal coefficient theorem, suppose that X is closed. Then
H;(X; Z) is a finitely generated abelian group. According to the classification theorem for finitely
generated abelian groups, there is a split exact sequence

0 — Ti(X) — Hi(X; Z) — H™(X) — 0,

where the torsion subgroup T;(X) c H;(X; Z) is the finite subgroup consisting of elements of finite
order. Furthermore, T;(X) is isomorphic to a direct sum of finite cyclic groups T;(X) = Z; &---® Z;,.
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The quotient group H;(X; Z)/T;(X) is a free group denoted H Z.free(X ). Since the sequence is split, there
exists isomorphisms
Hi(X;Z) = H™(X) ® T:(X).

Upon choosing a basis for H free(X ), we obtain an isomorphism
Hi(X; Z) = 7" & T(X),

for some nonnegative integer b;(X).

Recall the universal coefficient theorem
0 — Ext(H,_1(X;Z),A) —» H'(X; A) > Hom(H;(X; Z),A) — 0,

which is split, so there is an isomorphism H(X;A) = Ext(---) @ Hom(- - -). By classification of
finitely generated abelian groups, when X is closed,

Hi(X;2) = 7% ¢ T(X),

for some integer b;(X) and some torsion subgroup T;(X) = Z; & --- ® Z,,.

To compute real cohomology
H'(X;R) = Ext(---) @ Hom(- - - ),
we get Ext(H;_,(X; Z), R) = 0 and Hom(H;(X; Z), R) = R%®), thus
H'(X;R) = RO

and we see that b;(X) = b’(X), where b’(X) are the familiar Betti numbers from de Rham cohomology.
For integer cohomology, we compute Ext(H;_1(X; Z), Z) = Ti-; and Hom(H;(X; Z), Z) = 7YX 5o

HX;2) = 72"® g1, .

We now be more precise regarding the relation between real and integer cohomology for compact
manifolds. We have natural isomorphisms

H'(X;R) = Hom(H;(X; Z), R) = Hom(H;(X; Z), Z) ® R = Hj

ree

X;72)® R,

where we use the fact that torsion disappears under tensor or hom with R. Thus, we may view
H! (X;Z) as an integer lattice inside of the vector space H'(X; R).

free

Poincaré duality is a different identification of homology with cohomology, giving an isomorphism
H{(X Z) > Hy-i(X; 2),

where Z denotes homology with “twisted coefficients.” If X is closed, then H, f (X;A) = HK(X; A). If
X is oriented, then Z = Z, and consequently,

H(X;2) = 7" o T,_(X).
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Thus

0.

uC . PD
Ti(X) == T(Hi(X; 2)) = T(H™"(X;2)) = T(Hy-i=1(X)) =t iz (X).
Note that since Hy(X; Z) = z*components(X) jq free Ty = 0. Therefore, T,_; = Ty = 0,and T}, = Ty =

Now the homology and cohomology groups are very tightly constrained. For example, for a connected,
compact oriented 4-manifold, by the universal coefficient theorem,

’ i ‘ 2 ‘ T 1 ‘ 2 2 ‘ 3 > ‘ 1 : ‘
HX;2) |72 | 2P e | 26X e | 280 eT | 2@ eT,
H(X:;2) |z| 2V [72"®eTn |[27°WeT, | 28"PeT;

and then by Poincaré duality,

i Jol v ] o 5 4]

H(X;2) | 2 | 2"®en | 280 e | 2/® [z
H(X2) |z ZV® [ZPWern |ZVWern |z

For the Poincaré homology sphere P, since H;(X; Z) = 7Tlab (P, xo) = I** = 0, one easily computes

| i Jo[1]2]3]
HX;z)|z|o|o]|z
HX;Z)|Z|0|0|Z

Since there are no possibilities for nontrivial cup products, in both homology and cohomology, P
looks exactly like $%, even in the ring structure of cohomology.

Exercise. Compute the homology and cohomology groups of a connected closed oriented 3-manifold
X in terms of m(X).

In the compact case, an orientation is equivalent to a choice of generator of H;(X; Z) = Z, known as
the fundamental class [X]. This homology class should be thought of as a (oriented) triangulation of
X. Concretely, a nowhere vanishing element of w € Q" (X) determines a positive atlas, in which w is
positive in each chart. Thus fX w > 0. Clearly w € kerd, since Q"*(X) = 0. But [w] # 0 € H"(X;R)
since by Stokes’ theorem,

[w]:O:>w:d11:>/w:/d17:/ n=0.
X X 0X=0

Thus w must generate the one-dimensional vector space H"(X;R). After rescaling w by the ap-
propriate positive constant, w determines a generator for H"(X; Z) ¢ H"(X;R). By the universal
coefficient theorem, H,(X; Z) is the dual lattice inside the dual vector space H,(X;R), and we have
the corresponding dual basis element [X] € H,(X; Z).

In the compact oriented case, the Poincaré duality isomorphism H (X;Z2) - H,_i(X;2) is cap
product with the fundamental class [X]:

a [X] —~a.
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Specifically, for any ring R, the cap product can be defined as partial evaluation H;,;(X;R) X
H'(X;R) — Hj(X;R). Ignoring torsion, the cap product is dual to the cup product. If we view
Hirff(X ; Z) as the dual group to H ;’r;é (X; Z), then the map induced by the cap product and universal
coeflicients

H

free

(X;Z2) - H™(X;7) 5 H'Z/(X; Z)"

free

corresponds to the “cup product and integrate” map

H'(X;R) » H™(X;R)*

al—>(bl—>/(avb))
X

which we used to define the intersection form via de Rham cohomology. This gives the intersection
form the structure of a unimodular integer bilinear form, as was previously claimed.

B.6 Representing homology classes via submanifolds

Homology classes are represented by simplicial “cycles” i.e. chains without boundary. The “Steenrod
problem” asks whether a class a € H,(X; Z) can be represented by a manifold. Specifically, is there
a closed oriented smooth manifold M and a continuous map f : M — X such that the image of a
fundamental class f.([M]) = a? In his work on cobordism, Thom showed that this is not always
possible. However, there is always an integer multiple of a which is representable. This question
can be strengthened to require that f be either an immersion (locally an embedding, but globally
there can be self-intersections) or an embedding. In particular, when we discuss the minimal genus
problem, we want to know that classes a € H,(X; Z) are representable by embedded submanifolds.
Assuming some homotopy theory, we can prove via Poincaré duality that this is always possible when
X is a closed oriented 4-manifold.

To warm up, consider X closed and oriented, and a € H,_;(X; Z). We can write any such a as the
Poincaré dual a = PD(«) to & € H'(X; Z). The homotopy theory fact we require is that cohomology
groups are representable, i.e. HP(X; A) is in bijection with homotopy classes of maps from X into
some space K(A4, p), called an Eilenberg-MacLane space.

o
HP(X; A) 2 [X,K(4,p)] .
In particular,

H\(X;2) o [X,K(Z,1)]

and K(Z,1) = S'. Choosing a representative map h : X — S, the corresponding cohomology
class is given by pullback of the generator & = [d6/27] € H'(S'; Z). Thus each cohomology class
a € H(X; Z) is « = h*(&) for some map h : X — S'. We can represent the homology class PD(£) by
a point pt, so that PD(&) = [pt] € HO(SY).

Poincaré duality is functorial in the sense that
PD(a) = PD(K*(8)) = h*(PD()) = h*([pt]) = [ (p1)] .
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where h™! denotes the inverse image, assuming that h is transverse to the given representative pt of

PD(¥).

In summary, to represent a homology class a € H,_;(X; Z), write a = PD(«), and then choose a map
h: X — K(Z,1) such that « = h*(§) € HY(X; Z), where £ is the generator in Z = HY(K(Z,1); Z).
Since K(Z,1) happens to be a manifold, we can look for an explicit codimension 1 submanifold
Y ¢ K(Z,1) corresponding to PD(§) € H;(K(Z,1); Z). (Here, Y happens to be a point.) After
perturbing / to make it transverse to Y, a is the fundamental class of the preimage h™(Y).

With slight modification, the same argument carries through for a € H,_»(X; Z). In this case,
K(Z,2) = CP*™, where CP* is the union of the inclusions CP! ¢ CP? ¢ --- c | J; CP' = CP*.
While this is not a manifold in the traditional sense, the “cellular approximation theorem” of homotopy
theory allows us to homotope & to some CPYN with N finite. In this case, for £ the generator of
H?(CPY;Z) = Z, the Poincaré dual PD(§) = [CIPN'I]. Thus when h is transverse to CPN™, we

obtain a suitable embedded submanifold #~'(CPN"') whose fundamental class represents 4.

B.7 Self-intersection number

B.8 Cohomological definition of orientation
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