
Review of Stokes’�eorem with boundary

Suppose Mn is oriented, and η ∈ Ωn−1
c (M). Partitions of unity work the same way on manifolds

with boundary. �us we can reduce

∫∂M i∗(η) = ∫M dη

to

∫Rn−1
i∗(η) = ∫Rn−

dη, η ∈ Ωn−1
c (Rn

−).

(Recall that ∂Rn− = Rn−1.)

In coordinates, we have η = ∑
n
i=1(−1)i−1 ηi dx1 ∧⋯ ∧ d̂xi ∧⋯ ∧ dxn.

�e support of η is a closed and bounded subset of Rn−, so it is contained in some large half-ball.

�e map i∗ sets x1 = 0, so

i∗(η) = η1(0, x2, . . . , xn) dx2 ∧⋯ ∧ dxn + 0.

Computing,

∫Rn−
dη =

n

∑
i=1
∫
∞

xn=−∞
⋯ ∫

∞

x2=−∞ ∫
0

x1=−∞
⋯
∂ηi

∂xi
dx1⋯dxn .

We can reorder the integrals by Fubini’s �eorem. We want to integrate xi �rst:

∫
b

a

∂ηi

∂xi
dxi = ηi ∣x i=b − ηi ∣x i=a .

By compact support, as a → −∞, the hyperplane xi = a moves outside the support, so ηi ∣x i=a ≡ 0.
When i ≠ 1, the same thing happens as b → +∞. �e only remaining contribution is from the term

∫Rn−
dη = ∫

∞

xn=−∞
⋯ ∫

∞

x2=−∞
[ ∫

0

x1=−∞
∂η1
∂x1

dx1] dx2⋯dxn

= ∫Rn−1
(η1∣x1=0 − 0) dx2⋯dxn

= ∫Rn−1
i∗η.

Example 1. Fundamental �eorem of Calculus:

M = [a, b] , ∂M = {a} ⊔ {b} .

M is oriented by dt ∈ Ω1([a, b]). Anorientation on ∂M is a nowhere-vanishing element of Ω0({a}⊔
{b}), so it determies a ± sign for each point. �e outward conormal for b is dt, while the outward
conormal for a is −dt. Using the outward-�rst convention:

dt = dt ⋅ (+1) Ô⇒ sign(b) = +1,
= (−dt) ⋅ (−1) Ô⇒ sign(a) = −1.
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Example 2. Cylinders for Problem #8:

IfM is a manifold without boundary (∂M = ∅), and ω0 is an orientation form onM, the cylinder of
M is [0, 1] ×M with orientation form dt ∧ ω0. �en

∂ ([0, 1] ×M) = (∂ [0, 1]) ×M = ({0} ⊔ {1}) ×M = M0 ⊔M1.

�e outward conormal forM1 is dt, while the outward conormal forM0 is −dt. �us

dt ∧ ω0 Ô⇒ (M1, [ω0])
=(−dt) ∧ (−ω0) Ô⇒ (M0, [−ω0]) .

�usM1 is a copy ofM, whileM0 isM with the orientation reversed. We write this asM0 = M and
M1 = M. �en Stokes’ theorem tells us that if η ∈ Ωn−1([0, 1] ×M), then

∫[0,1]×M dη = ∫M0⊔M1 η = ∫M i∗0 (η) + ∫M i∗1 (η) = ∫M i∗1 (η) − ∫M i∗0 (η).

Example 3. Here we use Stokes’ �eorem without boundaries. Suppose Mn is closed (=compact,

without boundary) and oriented. �en Hn(M) ≠ 0.

Proof. SinceM is compact, Ωp(M) = Ω
p
c (M). SinceM is oriented, there exists an orientation form

ω ∈ Ωn
c (M) which is a positive multiple of dx1 ∧⋯ ∧ dxn in each coordinate chart. �us ∫M ω > 0.

Note that ω is closed automatically since dω ∈ Ωn+1(M) = 0. �us it determines a cohomology class

[ω] ∈ Hn(M). (Warning: previously I have been using the notation [ω] ∼ [ f ω], f > 0 to denote an
orientation. Now I mean cohomology: [ω] ∼ [ω + dη].)
For contradiction, suppose [ω] = 0 ∈ Hn(M). �is is equivalent to ω = dη for some η ∈ Ωn−1(M).

�en

0 < ∫M ω = ∫M dη = 0 ( since ∂M = ∅).

�eorem 4. Suppose M is compact and oriented. �ere does not exist a smooth map f ∶ M → ∂M
which �xes the boundary, i.e. f ∣∂M = Id∂M . For example, there is no map from the ball to its boundary
sphere which �xes the boundary sphere.

Proof. M oriented Ô⇒ ∂M oriented. ∂M ⊂ M closed Ô⇒ ∂M compact. �ere exists an orien-
tation form ω0 ∈ Ωn−1(∂M) = Ωn−1

c (∂M). Using a positive atlas for ω0, the coordinate expressions
are positive multiples of dx2 ∧⋯ ∧ dxn. �us

∫∂M ω0 > 0.

Now we argue by contradiction.

0 < ∫∂M ω0 = ∫∂M Id∗∂M(ω0) = ∫∂M f ∗(ω0) = ∫M d f ∗(ω0) = ∫M f ∗(dω0) = ∫M f ∗(0) = 0,

where we used dω0 ∈ Ωn(∂M) = 0 since ∂M only has dimension n − 1.

How do we make sense of what just happened? I don’t know exactly, but here is a paradigm shi�

which might help.

2



Doing topology with category theory

We want to think of things categorically. �is means by using commutative diagrams and functors.

De�nition. A commutative diagram is a diagramwhere any composition is independent of the path
taken.

Example 5. �e fundamental property of exterior derivatives d f ∗(ω) = f ∗(dω) is encoded by the

diagram

f ∶ M → N Ô⇒ Ωp(N)
f ∗ //

d
��

Ωp(M)

d
��

Ωp+1(N)
f ∗ // Ωp+1(M)

Example 6. Stokes’ �eorem:
Ωn−1

c (M)
i∗ //

d
��

Ωn−1
c (∂M)

∫∂M
��

Ωn
c (M)

∫M // R

Let’s reprove our theorem categorically.

Proof. �e hypothesis f ∣∂M = Id∂M can be rephrased as the commutative diagram

f ∣∂M = Id∂M Ô⇒ ∂M � � i //

Id∂M
&&

M f // ∂M .

Since M and ∂M are compact, Ωp
c = Ω

p. By example of the orientation form on ∂M, we know that
the following map is nonzero:

Ωn−1(∂M)

∫∂M≠0
��
R

�e strategy is to assemble everything we know like LEGOs. Stokes’:

Ωn−1(M)
i∗ //

d
��

Ωn−1(∂M)

∫∂M≠0
��

Ωn(M)
∫M // R

�e upper row suggests applying the functor Ωn−1 ∶

∂M � � i //

Id∂M
&&

M f // ∂M Ωn−1
Ô⇒ Ωn−1(∂M)

f ∗ //

IdΩn−1(∂M)

**
Ωn−1(M)

i∗ // Ωn−1(∂M) .
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Putting it together:

Ωn−1(∂M)
f ∗ //

IdΩn−1(∂M)

**
Ωn−1(M)

i∗ //

d
��

Ωn−1(∂M)

∫∂M≠0
��

Ωn(M)
∫M // R

Building further:

Ωn−1(∂M)
f ∗ //

IdΩn−1(∂M)

**

d
��

Ωn−1(M)
i∗ //

d
��

Ωn−1(∂M)

∫∂M≠0
��

0 = Ωn(∂M)
f ∗ // Ωn(M)

∫M // R

Now we have generated our contradiction:

●
Id //

��

●

≠0
��

0 // ●

�ese types of arguments are the essence of algebraic topology.
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