Classification of vector bundles over a 4-manifold

Recall from last time that if G is any compact simple Lie group, then G is the quotient of a simply-
connected simple Lie group G, which is uniquely determined by the Dynkin diagram of g. The
quotient is determined by ¢ := ker (exp : g - G), which can be any intermediate lattice

Aroot ctc Aweight-

and 5o 71 (G) = €/ Asoot is a finite abelian group.

Generalized Stiefel-Whitney class

Definition. For any smooth principal G-bundle, we define the generalized Stiefel-Whitney class
w,(P) € H?(X;m1(G)) by the following procedure. The short exact sequence

0-m(G)»G—->G-0

induces the map
HY(X;Gew ) 2 HA(X; m1(G)),

which obstructs extending the structure group of P to G.

Note that if G = SO(k) for k > 3, then G = Spin(k) and 7,(G) = Z,. Then w,(P) € H2(X;Z,) is
the ordinary second Stiefel-Whitney class, which is the obstruction to finding a Spin(k) structure.

Instanton number

We review the definition of connected sum of two connected oriented n-manifolds X;#X,. Choose
two small smooth balls B; c X;, with B, oriented positively and B, oriented negatively. Delete the
centers from the B;, and in polar coordinates, identify r¢ € B; with (1-r)¢ € B,. Flipping the radial
direction reverses orientation, which is compensated by the negative orientation on B,. The result
is unique up to diffeomorphism and independent of choices.

The operation of connected sum can be extended from oriented manifolds to oriented manifolds
equipped with principal G-bundles. P; — X;. We simply choose trivializations of P; over B;, and
glue according to the trivializations. The isomorphism class of P,#P, is independent of choice of
trivialization. Since S” is the identity with respect to connect sum, if we connect sum with a principal
bundle over $* we can alter the principal bundle without changing the base.

Let G be a compact simple Lie group. Consider a principal G-bundle P over $*. Since the thickened
hemispheres H, and H_ are contractible, we can find local trivializations of P over H, and H_. The
isomorphism class of P is determined by the single transition function ¢ : H, n H. — G. The
isomorphism class of P depends only on the homotopy class of ¢. The intersection H, n H_ is
homotopy equivalent to the equatorial S, so we get a correspondence between

isomorphism classes of smooth
principal G-bundles over S*

} < {homotopy classes of maps S* — G} =: m3(G).
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Bott showed that when G is simple, 773(G) 2 Z. If we let k index the corresponding integer, then
we get a group structure Py, #Px, = Py ,,. The number k is called the instanton number, Pontryagin
index, or topological charge. It’s possible to compute k(P) by a curvature integral, or by characteristic
classes. One such formula is

k(P) = {p1(Pxwa 9), [X])
2h(g)

where p, (real vector bundle) ¢ H*(X;Z) is the Pontryagin class, and h(g) is the “dual Coxeter
number” These formulas make sense over general closed oriented X. However because of the de-
nominator, k is not always an integer. It satisfies two important properties.

1. If Py denotes the bundle of charge k’ over $*, then

k(P#Py) = k(P) +K'.

2. The value of k(P) (mod 1) is determined by w,(P). In particular,
k(P) = -iw,(P)* (mod1).

However this formula requires caution, since w,(P) has coeflicients in 7;(G). Converting
w,(P)? to a number implicitly involves a choice of metric on Ayeights which in generally in-
troduces further denominators.

Theorem (Dold-Whitney). If X is a compact oriented 4-manifold, and if G is a compact simple Lie
group, then isomorphism classes of principal G-bundles P — X are in bijection with pairs (k,w,) €
Q x H*(X; m,(G)) satisfying the condition

k=-iw,*> (mod1).
The most important cases are G = SU(2), G = SO(3), and G = U(2) (not simple).

o In the case G = SU(r), w, = 0 and k € Z with k(P) = ¢,(P) - [ X], where ¢;(P) € H*(X;Z) is
the second Chern class.

o In the case G = SO(3), k € 1Z with k(P) = —3p1(P) - [X] = —iw,2(P) (mod 1), where
p1(P) € HY(X;Z) is the first Pontryagin class, and w,(P) € H*(X;Z,), and the extra factor
of 3 in front of w,2(P) arises from the identification 7, (SO(3)) 2 Z,. Note that we would only
expect w,2(P) € H*(X;Z,) to be well-defined modulo 2, but in fact it is well-defined modulo
4 by computing w,%(P) for some w, € H?(X;Z) which reduces modulo 2 to w, € H>(X;Z,).

o In the case G = U(2), k € 3Z with k(P) = (c,(P) — 3¢1(P)?) - [ X].

Note that for any compact Lie group G, the universal covering G = RF x G; x -----Gy, where the G;
are compact simple simply connected Lie groups, so although it's beyond the scope of this course,
classification of the corresponding principal bundles is still accessible.
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Hodge star

Let X be a closed oriented Riemannian 7-manifold X. Consider the de Rham cohomology H*(X;R)
defined by
kerd c Qk(X)
imaged
We wish to find a natural subspace H* ¢ Q(X) such that ¥ ~ H*(X;R) via the map w ~ [w]. In
other words, we want to trade our quotient space H*(X;R) for a subspace H*.

If V is a finite-dimensional Euclidean vector space, and if W c V is a subspace, then we can naturally
represent the quotient V/W by W*. Specifically, each coset in V//W intersects a unique vector in
W+, so we get an isomorphism W+ — V/W by v — [v]. Of course W* is not the only subspace
with this property.

Definition. A subspace S c V is called a slice for the quotient V/W if the quotient map restricts to
S as an isomorphism.

The idea of the Hodge decomposition is simply to imitate this construction in the infinite dimen-
sional setting of de Rham theory.

The first ingredient we need is an inner product on Q?(X). For this, consider R” equipped with the
standard SO(n) structure, i.e. the standard Euclidean metric and orientation, so that {e!,...,e"}
is an orthonormal basis. We define a Euclidean metric on A?R” by declaring et A --- A e’ to be an
orthonormal basis. More invariantly, one can define

(vl A AVE WA /\wl’) = det(vi,wf>,

and the right hand side is clearly invariant under O(#). (The action is vi A+ AV, = gVi A== A gVy.)

We can define a map on the exterior powers of R” by x : APR" — A""PR" characterized by the

relation

aAxf=(a,f)e r-ne.

This characterization is clearly invariant under SO(#), and one computes that
x (e Anet) = xelt A A e,

where i denotes the indices complementary to i, and = is determined by

el A Aeknet Ao ner = xel A Al

One verifies that
*2 = (_1)p(nfp) : APR™ — APR™,

Furthermore, * encodes the orientation and metric via the identities

xl=e' A ne,

(o, B) = x(@ A *f) = x(B A xa).



The Hodge star map is equivariant under SO(n), i.e. x(ga) = g(xa). For any vector space V
equipped with a reduction to SO(n), i.e. V is equipped with an orientation and a Euclidean metric,
the Hodge star determines a map x : A’V — A" PV, where

APV :=Fr9(V) x, APR".

Of course this also makes sense for any principal SO(#) bundle. Suppose X is a smooth n-manifold
equipped with a reduction of the cotangent bundle T* X to a SO(n) structure, i.e. X is oriented Rie-
mannian. (A Riemannian metric determines an isomorphism TX — T*X, so reductions of T*X or
T X are equivalent.) In particular, x induces a bundle map A?T*X — A" PT*X. Differential forms
are sections Q?(X) = ['(APT*X), so we get amap  : Q?(X) - Q" ?(X) which acts fiberwise.

Finally, we define a Euclidean inner product on Qf(X) (p-forms with compact supports) by

(a,B) = Loc A *P.



